# Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce, and Science College, Ahmednagar (Autonomous)

(Affiliated to Savitribai Phule Pune University, Pune)



# National Education Policy (NEP) Choice Based Credit System (CBCS)

Programme Skeleton and Syllabus of B.Sc. Electronic Science (Major)

Implemented from

Academic Year 2023-24

### Credit Distribution: B.Sc. Electronic Science (Major) including Minor and OE and

#### other courses.

|            | Type of Courses                        | III Yr | IV Yrs (Honours) |
|------------|----------------------------------------|--------|------------------|
| Major      | Discipline-Specific Courses (DSC)      | 46     | 74               |
| Electronic | Discipline Specific Elective (DSE)     | 08     | 16               |
| Science    | Skill Enhancement Courses (SEC)        | 06     | 06               |
|            | Vocational Skill Courses (VSC)         | 08     | 08               |
|            | On-Job Training (OJT)                  | 04     | 08               |
|            | Field Project (FP)                     | 04     | 04               |
|            | Community Engagement and Service (CEP) | 02     | 02               |
|            | Research project                       | 00     | 00               |
|            | Research Methodology                   | 00     | 04               |
|            | Indian Knowledge System                | 02     | 02               |
|            | Total (I, II and III Year)             | 80     | 124              |
| Minor      | Minor                                  | 20     | 20               |
| Other      | Open Elective (OE) / Multidisciplinary | 12     | 12               |
| Courses    | Courses                                |        |                  |
|            | Co-Curricular Courses                  | 08     | 08               |
|            | Ability Enhancement Courses            | 08     | 08               |
|            | Value Education Courses                | 04     | 04               |
|            | Total                                  | 132    | 176              |

### **B. Sc. Programme Framework: Credit Distribution**

|      | 10       |        |       |    |    |       | 1        | Major             |      |     |         |        |        |         |       |      |       |       |       |       |
|------|----------|--------|-------|----|----|-------|----------|-------------------|------|-----|---------|--------|--------|---------|-------|------|-------|-------|-------|-------|
| Year | Semester | Level  |       |    |    | DSE   |          | SEC               |      | JSA | /IN/CEP | FP/OJT | IKS    | Minor   |       | OE   | CC    | AEC   | VEC   | Total |
| Ι    | Ι        | 4.5    | Т     | Р  | Т  | Р     | Т        | Р                 | Т    | Р   | Τ       | Р      |        | T/<br>P | -     | -    | -     | -     | I     | -     |
| Ι    | II       | 4.5    | 4     | 2  | I  | -     | I        | 2                 | I    | I   | -       | I      | 2      | 03      |       | 3    | 2     | 2     | 2     | 22    |
|      |          |        | 6     | -  | I  | -     |          | 2                 | -    | 2   | -       | -      |        | 03      |       | 3    | 2     | 2     | 2     | 22    |
| Exi  | t Opti   |        |       |    |    |       |          | cate ir<br>ernshi |      | •   |         |        |        |         |       |      |       |       | 4 cr  | edit  |
| II   | III      | 5.0    | 6     | 2  | -  | -     |          | 2                 | -    | -   | -       | 2      |        | 03      |       | 3    | 2     | 2     | -     | 22    |
| II   | IV       | 5.0    | 6     | 2  | -  | -     |          | -                 | -    | 2   | -       | 2      |        | 03      | 3     | 3    | 2     | 2     | -     | 22    |
| Ex   | it Opt   |        |       |    |    |       |          |                   |      |     |         |        |        |         |       |      |       |       | 4 cre | dit   |
|      |          |        |       |    |    | -     | e /Int   | ernsh             | ip c |     | Cont    |        | e witl | -       | or a  | nd m | ninon | -     | 1     |       |
| III  | V        | 5.5    | 8     | 2  | 2  | 2     | -        | -                 | -    | 2   |         | 2      |        | 04      | -     | -    | -     | -     | -     | 22    |
| III  | VI       | 5.5    | 6     | 2  | 2  | 2     | -        | -                 | -    | 2   |         | 4      |        | 04      | -     | -    | -     | -     | -     | 22    |
| Exi  | t Opti   | on: A  | ward  | of | UC | G De  | <u> </u> | in M<br>jor fo    | •    |     |         |        |        | th 13   | 2 cre | dits | or c  | ontii | nue v | with  |
| IV   | VII      | 6.0    | 8     | 6  | 2  | 2     | RN       | Л-4               | -    | -   | -       | -      |        |         | -     | -    | -     | -     | -     | 22    |
| IV   | VII<br>I | 6.0    | 8     | 6  | 2  | 2     | -        | -                 | -    | -   | -       | 4      |        |         | -     | -    | -     | -     | -     | 22    |
|      | F        | Four Y | ear l | UG | De | egree | e(Ho     | nours             | ) w  | ith | Ma      | jor a  | and N  | 1inoi   | with  | n 17 | 6 cre | edits |       |       |

|      |          |        |        |       |      |       | I    | Majo | or   |      |        |         |       |       |         |                    |        |       |        |       |
|------|----------|--------|--------|-------|------|-------|------|------|------|------|--------|---------|-------|-------|---------|--------------------|--------|-------|--------|-------|
| Year | Semester | Level  | C<br>C | DSC   | Ļ    | DSE   | CEC  |      | UOII |      | FP/OJT | /IN/CEP | IKS   | Minor | IUIIIVI | OE                 | CC     | AEC   | VEC    | Total |
| Ι    | -        | -      | Τ      | Р     | Т    | Р     | Т    | Р    | Т    | Р    | Т      | Р       |       | Т     | Р       | -                  | -      | -     | -      | -     |
| Ι    | Ι        | 4.5    | 2      | 1     | -    | -     | -    | 1    | -    | -    | -      | -       | 1     | 1     |         | 1                  | 1      | 1     | 1      | 10    |
|      | II       | 4.5    | 2      | -     | -    | -     |      | 1    | -    | 1    | -      | -       |       | 1     | -       | 1                  | 1      | 1     | 1      | 09    |
| E    | Exit Op  | tion:  | Aw     | ard   |      |       |      |      |      |      | •      |         |       |       |         | and an<br>ue wi    |        |       |        |       |
| II   | III      | 5.0    | 2      | 1     | -    | -     |      | 1    | -    | -    | -      | 1       |       | 1     |         | 1                  | 1      | 1     | -      | 09    |
| II   | IV       | 5.0    | 2      | 1     | -    | -     |      | -    | -    | 1    | -      | 1       |       | 1     |         | 1                  | 1      | 1     | -      | 09    |
| Ez   | xit Opt  |        |        |       |      |       | -    |      |      | •    |        |         |       |       |         | l an \a<br>r and 1 |        |       | l crec | lit   |
| III  | V        | 5.5    | 2      | 1     | 1    | 1     | -    | -    | -    | 1    |        | 1       |       | 1     | -       | -                  | -      | -     | -      | 08    |
| III  | VI       | 5.5    | 2      | 1     | 1    | 1     | -    | -    | -    | 1    |        | 1       |       | 1     | -       | -                  | -      | -     | -      | 08    |
| Ex   | it Opti  | on: A  | wai    | rd of | f U  | G De  |      |      |      |      |        |         | or wi | th 1  | 32      | credits            | s or c | ontin | ue w   | ith   |
| IV   | VII      | 6.0    | 3      | 3     | 1    | 1     | 0    | 1    | -    | -    | -      | -       |       | -     | -       | -                  | -      | -     | -      | 09    |
| IV   | VIII     | 6.0    | 3      | 3     | 1    | 1     | -    | -    | -    | -    | -      | 1       |       | -     | -       |                    | -      | -     | -      | 09    |
|      | F        | Four Y | ear    | UC    | G De | egree | e(Ho | nou  | rs)  | with | n Ma   | ajor    | and I | Min   | or v    | vith 17            | 76 cre | edits |        |       |

# **B. Sc. Programme Framework: Course Distribution**

Programme Framework (Course Distribution): B.Sc. Electronic Science (Major)

|      |          |       |     |     |   |     |      | N           | Majoi | r |                |   |     | Т  | otal |
|------|----------|-------|-----|-----|---|-----|------|-------------|-------|---|----------------|---|-----|----|------|
| Year | Semester | Level | DeC | Jer |   | JOL | SE   | 2           | VS    | С | FP/0<br>/IN/CI |   | IKS |    |      |
|      | Š        |       | Т   | Р   | Τ | Р   | Τ    | Р           | Τ     | Р | Т              | Р | Т   | Т  | P/PR |
| Ι    | Ι        | 4.5   | 2   | 1   | - | -   | -    | 1           | -     | - | -              | - | 01  | 03 | 02   |
| Ι    | II       | 4.5   | 2   | -   | - | -   |      | 1           | -     | 1 | -              | - |     | 02 | 02   |
| II   | III      | 5.0   | 2   | 1   | - | -   |      | 1           | -     | - | -              | 1 |     | 02 | 03   |
| II   | IV       | 5.0   | 2   | 1   | - | -   |      | -           | -     | 1 | -              | 1 |     | 02 | 03   |
| III  | V        | 5.5   | 2   | 1   | 1 | 1   | -    | -           | -     | 1 |                | 1 |     | 03 | 04   |
| III  | VI       | 5.5   | 2   | 1   | 1 | 1   | -    | -           | -     | 1 |                | 1 |     | 03 | 04   |
|      |          |       |     |     |   |     | B.Sc | . Ho        | nour  | S |                |   |     |    |      |
| IV   | VII      | 6.0   | 3   | 3   | 1 | 1   | RM   | <b>1</b> -1 | -     | - | -              | - |     | 05 | 04   |
| IV   | VIII     | 6.0   | 3   | 3   | 1 | 1   | -    | -           | -     | - | -              | 1 |     | 04 | 05   |

| ar   | ester    | vel   |    |    |   |    |          | Maj | or  |   |               |              |     | tal   |
|------|----------|-------|----|----|---|----|----------|-----|-----|---|---------------|--------------|-----|-------|
| Year | Semester | Level | DS | SC | D | SE | SE       | C   | VSC | C | FP/<br>/IN/Cl | OJT<br>EP/RP | IKS | Total |
|      |          |       | Т  | Р  | Т | Р  | Т        | Р   | Т   | Р | Т             | Р            | Т   |       |
| Ι    | Ι        | 4.5   | 4  | 2  | - | -  | -        | 2   | -   | - | -             | -            | 02  | 10    |
| Ι    | II       | 4.5   | 6  | -  | - | -  |          | 2   | -   | 2 | -             | -            |     | 10    |
| II   | III      | 5.0   | 6  | 2  | - | -  |          | 2   | -   | - | -             | 2            |     | 12    |
| II   | IV       | 5.0   | 6  | 2  | - | -  |          | -   | -   | 2 | -             | 2            |     | 12    |
| III  | V        | 5.5   | 8  | 2  | 2 | 2  | -        | -   | -   | 2 |               | 2            |     | 18    |
| III  | VI       | 5.5   | 6  | 2  | 2 | 2  | -        | -   | -   | 2 |               | 4            |     | 18    |
| IV   | VII      | 6.0   | 8  | 6  | 2 | 2  | RM-<br>4 |     | -   | - | -             | -            |     | 22    |
| IV   | VIII     | 6.0   | 8  | 6  | 2 | 2  | -        | -   | -   | - | -             | 4            |     | 22    |

### Programme Framework (Credit Distribution): B.Sc. Electronic Science (Major)

# Programme Framework (Courses and Credits): B.Sc. Electronic Science (Major)

| Sr.<br>No. | Year | Sem<br>ester | Level | Course<br>Type | Course Code | Title                             | Credits |
|------------|------|--------------|-------|----------------|-------------|-----------------------------------|---------|
| 1.         | Ι    | Ι            | 4.5   | DSC-1          | BS-ES111T   | Principles of Analog Electronics  | 02      |
| 2.         | Ι    | Ι            | 4.5   | DSC-2          | BS-ES112T   | Principles of Digital Electronics | 02      |
| 3.         | Ι    | Ι            | 4.5   | DSC-3          | BS-ES113P   | Practical Course – I              | 02      |
| 4.         | Ι    | Ι            | 4.5   | SEC-1          | BS-ES114P   | Practical Course – II             | 02      |
| 5.         | Ι    | Ι            | 4.5   | IKS-1          | BS-ES115T   | Evolution of Electronics in India | 02      |
| 6.         | Ι    | II           | 4.5   | DSC-4          | BS-ES121T   | Analog Device Applications        | 03      |
| 7.         | Ι    | II           | 4.5   | DSC-5          | BS-ES122T   | Digital Circuits and Computer     | 03      |
|            |      |              |       |                |             | Organization                      |         |
| 8.         | Ι    | II           | 4.5   | SEC-2          | BS-ES123P   | Practical Course – III            | 02      |
| 9.         | Ι    | II           | 4.5   | VSC-1          | BS-ES124P   | Practical Course – IV             | 02      |
| 10         | Π    | III          | 5.0   | DSC-6          | BS-ES231T   | Analog Circuit Design             | 03      |
| 11         | II   | III          | 5.0   | DSC-7          | BS-ES232T   | Digital System Design             | 03      |
| 12         | Π    | III          | 5.0   | DSC-8          | BS-ES233P   | Practical Course – I              | 02      |
| 13         | Π    | III          | 5.0   | SEC-3          | BS-ES234P   | Practical Course – II             | 02      |
| 14         | Π    | III          | 5.0   | FP-01          | BS-ES235P   | Field Project - I                 | 02      |
| 15         | Π    | IV           | 5.0   | DSC-9          | BS-ES241T   | Communication Electronics         | 03      |
| 16         | II   | IV           | 5.0   | DSC-           | BS-ES242T   | Microcontroller Programming       | 03      |
|            |      |              |       | 10             |             | and Applications                  |         |
| 17         | Π    | IV           | 5.0   | DSC-           | BS-ES243P   | Practical Course – III            | 02      |
|            |      |              |       | 11             |             |                                   | 02      |
| 18         | Π    | IV           | 5.0   | VSC-2          | BS-ES244P   | Practical Course – IV             | 02      |
| 19         | Π    | IV           | 5.0   | CEP-           | BS-ES245P   | Community Engagement and          | 02      |
|            |      |              |       | 01             |             | Service                           | 02      |

Department of Electronic Science, New Arts, Commerce and Science College, Ahmednagar

| 20 | III | V    | 5.5 | DSC-<br>12 | BS-ES351T                                                    | Sensors and Process Control<br>Systems                | 04 |
|----|-----|------|-----|------------|--------------------------------------------------------------|-------------------------------------------------------|----|
| 21 | III | V    | 5.5 | DSC-       | BS-ES352T                                                    | 'C' Programming                                       | 04 |
| 22 | III | V    | 5.5 | 13<br>DSC- | BS-ES353P                                                    | Practical Course – I                                  | 02 |
| 23 | III | V    | 5.5 | 14<br>DSE- | BS-ES354T(A)                                                 | Fundamentals and Applications                         | 02 |
|    |     |      |     | 01         | $\mathbf{D}\mathbf{C} = \mathbf{C}254\mathbf{T}(\mathbf{D})$ | of PIC microcontrollers                               |    |
|    |     |      |     |            | BS-ES354T(B)                                                 | Fundamentals and Applications of AVR microcontrollers |    |
| 24 | III | V    | 5.5 | DSE-       | BS-ES355P(A)                                                 | Practical Course – II                                 | 02 |
|    |     |      |     | 02         | BS-ES355P(B)                                                 | Practical Course – II                                 |    |
| 25 | III | V    | 5.5 | VSC-3      | BS-ES356P                                                    | Practical Course – III                                | 02 |
| 26 | III | V    | 5.5 | FP-02      | BS-ES357P                                                    | Field Project - II                                    | 02 |
| 27 | III | VI   | 5.5 | DSC-<br>15 | BS-ES361T                                                    | Digital System Design using<br>Verilog                | 03 |
| 28 | III | VI   | 5.5 | DSC-<br>16 | BS-ES362T                                                    | PLC and its Applications                              | 03 |
| 29 | III | VI   | 5.5 | DSC-<br>17 | BS-ES363P                                                    | Practical Course – IV                                 | 02 |
| 30 | III | VI   | 5.5 | DSE-       | BS-ES364T(A)                                                 | Embedded System Design                                | 02 |
|    |     |      | 0.0 | 03         | BS-ES364T(B)                                                 | Electronic Design Automation<br>Tools                 | 02 |
| 31 | III | VI   | 5.5 | DSE-       | BS-ES365P(A)                                                 | Practical Course – V                                  | 02 |
|    |     |      |     | 04         | BS-ES365P(B)                                                 | Practical Course – V                                  |    |
| 32 | III | VI   | 5.5 | VSC-4      | BS-ES366P                                                    | Practical Course – VI                                 | 02 |
| 33 | III | VI   | 5.5 | OJT-<br>01 | BS-ES367P                                                    | On Job Training - I                                   | 04 |
| I  |     |      | B.S |            | onic Science (Ma                                             | jor with Honours)                                     |    |
| 34 | IV  | VII  | 6.0 | DSC-       | BS-ES471T                                                    | Modern Communication                                  | 03 |
|    |     |      |     | 18         |                                                              | Technologies                                          |    |
| 35 | IV  | VII  | 6.0 | DSC-<br>19 | BS-ES472T                                                    | Advanced Analog Circuit Design                        | 03 |
| 36 | IV  | VII  | 6.0 | DSC-<br>20 | BS-ES473T                                                    | Programming Raspberry Pi using<br>Python              | 02 |
| 37 | IV  | VII  | 6.0 | DSC-<br>21 | BS-ES474P                                                    | Practical Course – I                                  | 02 |
| 38 | IV  | VII  | 6.0 | DSC-<br>22 | BS-ES475P                                                    | Practical Course – II                                 | 02 |
| 39 | IV  | VII  | 6.0 | DSC-<br>23 | BS-ES476P                                                    | Practical Course – III                                | 02 |
| 40 | IV  | VII  | 6.0 | DSE-       | BS-ES477T(A)                                                 | Advanced Embedded System                              | 02 |
|    |     |      |     | 05         | BS-ES477T(B)                                                 | Design<br>C++ Programming and Data<br>Structure       |    |
| 41 | IV  | VII  | 6.0 | DSE-       | BS-ES478P(A)                                                 | Practical Course – IV                                 | 02 |
| 1  | ΤŸ  | · 11 | 0.0 | 06         | BS-ES478P(B)                                                 | Practical Course – IV                                 | 02 |
| 42 | IV  | VII  | 6.0 | RM-        | BS-ES479T/P                                                  | Research Methodology                                  | 04 |
|    |     |      |     | 01         |                                                              |                                                       |    |
| 43 | IV  | VIII | 6.0 | DSC-<br>24 | BS-ES481T                                                    | Electromagnetic Fields and<br>Antennas                | 03 |

Department of Electronic Science, New Arts, Commerce and Science College, Ahmednagar

| 44 | IV | VIII | 6.0 | DSC-<br>25 | BS-ES482T                    | Internet of Things                                  | 03 |
|----|----|------|-----|------------|------------------------------|-----------------------------------------------------|----|
| 45 | IV | VIII | 6.0 | DSC-<br>26 | BS-ES483T                    | Optical Fiber Communication                         | 02 |
| 46 | IV | VIII | 6.0 | DSC-<br>27 | BS-ES484P                    | Practical Course – V                                | 02 |
| 47 | IV | VIII | 6.0 | DSC-<br>28 | BS-ES485P                    | Practical Course – VI                               | 02 |
| 48 | IV | VIII | 6.0 | DSC-<br>29 | BS-ES486P                    | Practical Course – VII                              | 02 |
| 49 | IV | VIII | 6.0 | DSE-<br>07 | BS-ES487T(A)<br>BS-ES487T(B) | Digital Image Processing<br>Artificial Intelligence | 02 |
| 50 | IV | VIII | 6.0 | DSE-<br>08 | BS-ES488P(A)<br>BS-ES488P(B) | Practical Course – VIII<br>Practical Course – VIII  | 02 |
| 51 | IV | VIII | 6.0 | OJT-<br>02 | BS-ES489P                    | On Job Training - II                                | 04 |

# Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce and Science College, Ahmednagar (Autonomous)

| Sr. No. | Name                    | Designation              |
|---------|-------------------------|--------------------------|
| 1.      | Mr. D. K. Sonawane      | Chairman                 |
| 2.      | Mrs. S. D. Shelke       | Member                   |
| 3.      | Dr. D. S. Shelar        | Member                   |
| 4.      | Miss. M. R. Markad      | Member                   |
| 5.      | Dr. M. A. Shaikh        | Member                   |
| 6.      | Mr. G. V. Avhale        | Member                   |
| 7.      | Miss. P. M. Gaikwad     | Member                   |
| 8.      | Dr. S. N. Helambe       | Academic Council Nominee |
| 9.      | Mr. S. K. Shinde        | Academic Council Nominee |
| 10.     | Dr. M. S. Zambare       | Vice-Chancellor Nominee  |
| 11.     | Mr. Bipinchandra Todmal | Alumni                   |
| 12.     | Mr. P. D. Nirmal        | Industry Expert          |
| 13.     | Prof. A. V. Mancharkar  | Member (co-opt)          |
| 14.     | Mrs. B. M. Danave       | Member (co-opt)          |

#### **Board of Studies in Electronic Science**

### 1. Prologue/ Introduction of the programme:

The Department of Electronic Science offers B.Sc. programme for 3 academic years and 6 semesters and B.Sc. (Honours) programme of 4 years and 8 semesters. For B.Sc. the minimum total number of credits requirements is 132 credits and for B.Sc. (Honours) the minimum total number of credits requirements is 176 credits. The overall credits divided into three groups i.e. major, minor and other courses. The students has to take major course as a specialization followed by minor course from other science department and other courses as per structure of credits distribution. In Major courses credits, for 3 year B.Sc. (Honours) 74 Discipline-Specific Courses (DSC) at each semester and for 4 year B.Sc. (Honours) 74 Discipline-Specific Courses (DSC) at each semester, 8 Discipline-Specific Elective (DSE) at B.Sc. and 16 Discipline-Specific Elective (DSE) at B.Sc. (Honours), 6 Skill Enhancement Courses (SEC) at both B.Sc. and B.Sc. (Honours), 8 Vocational Skill Courses (VSC) at both B.Sc. and B.Sc. (Honours), 4 On-Job Training (OJT) at B.Sc. and 8 On-Job Training (OJT) at

B.Sc. (Honours), 02 Community Engagement and Service (CEP) at both B.Sc. and B.Sc. (Honours), 4 Research Methodology at B.Sc. (Honours) and 2 Indian Knowledge System (IKS) at both B.Sc. and B.Sc. (Honours). In Minor courses credits, 20 Minor at both B.Sc. and B.Sc. (Honours). In Other courses credits, 12 Open Elective (OE) / Multidisciplinary Courses, 8 Co-Curricular Courses (CC), 8 Ability Enhancement Courses (AEC), 4 Value Education Courses (VEC) at both B.Sc. and B.Sc. (Honours) will be taken from other science stream at first and second year of each semester,

The syllabus has been designed such that the knowledge of fundamental concepts, advanced technologies and specific practical skills will be developed among students. To understand advanced electronics technologies students should first understand the basic concepts of electronics. In the first year of the B.Sc. and B.Sc. (Honours) electronic science course, the basic concepts of analog and digital electronics with the required theoretical understanding and practical skills have been covered. During the second year of the B.Sc. and B.Sc. (Honours), students will learn about some designing aspects of analog and digital electronics with practical based on system design. In addition, the students will learn about communication electronics and the microcontroller programming which has large application areas. In the third year of the B.Sc. and B.Sc. (Honours) course, advanced concepts of the electronics field are covered, where the students will get knowledge about sensor transducers & process control systems, 'C' programming, advanced microcontrollers, advanced digital, Programmable Logic Control (PLC), will be covered which has great industrial weightage. Also perform project work and On-Job Training in the third year that improves their practical knowledge as well as allows them to express themselves. In the fourth year of B.Sc. (Honours) course, some more applied courses will teach like modern communication, advanced analog, programming Raspberry Pi using Python, advanced embedded system design, electromagnetic fields and antennas, Internet of Things, optical fiber communication, digital image processing or artificial intelligence and in addition to that Research Methodology course is introduce which will help for scientific temper at UG level.

Electronic Science is an important branch of science devoted to the design, implementation and analysis of electronic circuits and systems. Electronics technology has revolutionized various fields including communication, consumer appliances, medical, defense and so on. The advances in electronics technology make systems smaller, smarter and powerful. The designing-based approach has been used mostly in the syllabus that trains students to apply the acquired knowledge to design and analyze circuits for specific applications.

### 2. Programme Outcomes (POs):

Students enrolled in the program complete a curriculum that exposes and trains students in a full range of essential skills and abilities. They will have the opportunity to master the following objectives.

To get the knowledge of technological and practical aspects of electronic science.

- i. To familiarize with the concepts of electronics technologies.
- ii. To create the foundation for research and development in Electronics.
- iii. To enhance the programming skill in Electronics.
- iv. To get the practical skills required for electronics industries.
- v. To develop the analytical abilities towards the use of electronics in real-world problems.
- vi. To familiarize with the current and recent technological developments.
- vii. To enrich knowledge through activities such as industrial visits, seminars, projects etc.

| Title of th    | ne Course: Prin     | nciples of Ana | log Electro | onics   |                   |      |         |       |  |  |  |  |
|----------------|---------------------|----------------|-------------|---------|-------------------|------|---------|-------|--|--|--|--|
| Year: I        | Year: I Semester: I |                |             |         |                   |      |         |       |  |  |  |  |
|                |                     | Credit Dist    | ribution    |         |                   |      |         |       |  |  |  |  |
| Course<br>Type | Course<br>Code      | Theory         | Practical   | Credits | Allotted<br>Hours | Alle | otted M | larks |  |  |  |  |
| 71             |                     |                |             |         |                   | CIE  | ESE     | Total |  |  |  |  |
| DSC-01         | BS-ES111T           | 02             | 00          | 02      | 30                | 15   | 35      | 50    |  |  |  |  |

#### **Learning Objectives:**

- 1. To study the different electronic components.
- 2. To study Network theorems.
- 3. To study different semiconductor diodes.
- 4. To understand BJT configurations.

#### **Course Outcomes (Cos):**

After completion of the course, the students will be able to,

- 1. Select proper electronic components as per the need of the application.
- 2. Simplify different electronic circuits using network theorems.
- 3. Understand the concept of semiconductor diodes
- 4. Compare different types of BJT configurations.

#### **Detailed Syllabus:**

#### **Unit I: Electronic Components**

Introduction to electronics, applications of electronics, classification of components. Passive components: resistors, capacitors, inductors, relays, transformer, batteries, switches, cables and connectors, fuses (only basic concept, working, classification, specifications and application is expected), series and parallel combination of resistors, capacitors and inductors. (Qualitative analysis only).

(9)

(6)

#### Unit II: Basic Electrical Circuits and Circuit Theorems

Ohm's law, voltage and current dividers, Kirchhoff's voltage law, Kirchhoff's current law, Thevenin's theorem, Norton's theorem, Superposition theorem and Maximum power transfer theorem. Numerical problems based on these network theorems. Charging-discharging of capacitor, AC applied to R, C and L, LCR series resonant circuit, RC low pass and high pass filter.

#### **Unit III: Semiconductor Diodes and Circuits**

Semiconductor, intrinsic and extrinsic semiconductor, P and N type semiconductors, formation of PN junction diode, forward and reverse bias characteristics, Zener diode, Light Emitting Diode, Photo Diode, Solar Cell (construction, working principle, characteristics, applications), Opto-coupler concept, varactor diode.

Rectifiers (half and full wave), rectifier with capacitor-filter, Zener regulator, Block diagram of power supply.

#### **Unit IV: Bipolar Junction Transistor (BJT)**

Bipolar Junction Transistor (BJT) types, symbol, construction, working principle, transistor configurations - CB, CC (only concept), CE configuration: input and output characteristics, the definition of  $\alpha$ ,  $\beta$  and  $\Upsilon$ . The concept of biasing – fixed bias, potential divider bias, transistor as a CE amplifier, concept of gain and bandwidth, transistor as a switch.

#### **Suggested Readings/Material:**

- 1. Electronic Devices and Circuit Theory Robert L. Boylestad and Louis Nashelsky.
- 2. Electronic Devices and Circuits I T. L. Floyd- PHI.
- 3. Integrated Electronics Millmam and Halkias.
- 4. Electronic Devices and Circuits Bogart.
- 5. Principals of Electronics V.K. Mehta, S. Chand and Co.
- 6. A textbook of electrical technology B. L. Theraja, S. Chand.

(8)

(7)

| Title of th    | e Course: Prin | ciples of Digi | tal Electro | nics     |                   |                |     |       |
|----------------|----------------|----------------|-------------|----------|-------------------|----------------|-----|-------|
| Year: I        |                |                | Sem         | ester: I |                   |                |     |       |
|                |                | Credit Dist    | tribution   |          |                   |                |     |       |
| Course<br>Type | Course Code    | Theory         | Practical   | Credits  | Allotted<br>Hours | Allotted Marks |     |       |
| J 1            |                | J              |             |          |                   | CIE            | ESE | Total |
| DSC-02         | BS-ES112T      | 02             | 00          | 02       | 30                | 15             | 35  | 50    |

#### **Learning Objectives:**

- 1. To learn different number system and their interconversion.
- 2. To understand logic gates and their applications in Boolean algebra.
- 3. To comprehend arithmetic circuit design.
- 4. To know logic families in digital electronics.

#### **Course Outcomes (Cos):**

After completion of the course, the students will be able to,

- 1. Solve problems based on inter-conversion of number systems.
- 2. Reduce the logical expression using Boolean algebra.
- 3. Minimize the logical equations using K-maps.
- 4. Use different arithmetic circuits.

#### **Detailed Syllabus:**

#### **Unit I: Number Systems and Digital Codes**

Introduction to decimal, binary, octal and hexadecimal number systems and their inter-conversions, the concept of 1's and 2's complements, binary addition, binary subtraction using 1's and 2's complements. BCD code, Excess-3 code, Gray code and ASCII code. Gray to Binary and Binary to Gray conversion.

#### Unit II: Logic Gates and Boolean Algebra

Logic gates: basic and derived (symbol, Boolean equation and truth table), concept of universal gates. Laws of Boolean Algebra, De-Morgan's theorems, simplification of logic equations using Boolean algebra, minterms, maxterms, Boolean expression in SOP and POS form, conversion of SOP/POS expression to its standard SOP/POS form, problems based on SOP (up

(10)

(12)

#### Department of Electronic Science, New Arts, Commerce and Science College, Ahmednagar

to 4 variables). Introduction to Karnaugh map, digital designing using K-map for 3-bit gray to binary and binary to gray conversion. Ex-OR gate as a 4-bit parity checker and generator.

#### **Unit III: Arithmetic Circuits**

Introduction to Arithmetic circuits, half adder, full adder, half subtractor, full subtractor, fourbit parallel adder, universal adder / subtractor, digital comparator, introduction to ALU.

#### **Unit IV: Logic Families**

Introduction of CMOS and TTL logic families. Parameters: voltage levels, propagation delay, noise margin, fan in, fan out, power dissipation. Comparison between CMOS and TTL logic families.

#### Suggested Readings/Material:

- 1. Digital Design M. Morris Mano, PHI, New Delhi.
- 2. Digital Systems Principles and Applications Ronald J. Tocci.
- 3. Digital electronics G. K. Kharate, Oxford University Press.
- 4. Fundamentals of Digital Circuits Anand Kumar.
- 5. Digital Principles and Applications Malvino and Leach, TMG Hill Edition.

(05)

(03)

| Title of th    | e Course: Pra  | ctical Course | - I       |         |                   |      |         |       |  |  |  |  |
|----------------|----------------|---------------|-----------|---------|-------------------|------|---------|-------|--|--|--|--|
| Year: I        |                |               |           |         |                   |      |         |       |  |  |  |  |
|                |                | Credit Dist   | ribution  |         |                   |      |         |       |  |  |  |  |
| Course<br>Type | Course<br>Code | Theory        | Practical | Credits | Allotted<br>Hours | Alle | otted M | larks |  |  |  |  |
| J 1            |                |               |           |         |                   | CIE  | ESE     | Total |  |  |  |  |
| DSC-03         | BS-ES113P      | 00            | 02        | 02      | 60                | 15   | 35      | 50    |  |  |  |  |

### Learning Objectives:

- 1. To identify and calculate values of electronic components.
- 2. How to use different laboratory instruments for measuring different parameters.
- 3. To use breadboard / tag-board for building small electronic circuits.

#### **Course Outcomes (Cos):**

After completion of the course, the students will be able to,

- 1. Identify different electronic components and instruments.
- 2. Understand the operation of different laboratory instruments and used them for measuring different parameters.
- 3. Use breadboard / tag-board for building small electronic circuits.

#### **Detailed Syllabus:**

#### **GROUP A (Any 10)**

- 1. To verify the Superposition theorem.
- 2. To verify Kirchhoff's voltage and current laws.
- 3. To verify Thevenin's Theorem.
- 4. To verify Maximum Power Transfer Theorem.
- 5. To study forward and reverse characteristics of diode.
- 6. To study diode rectifier circuits.
- 7. To design Zener as a voltage regulator.
- 8. To study transistor as a switch.
- 9. Study of Single stage RC coupled CE transistor Amplifier (Gain/ Bandwidth).
- 10. Study of solar cells.
- 11. To verify Norton's Theorem.

- 12. To build and test Low pass and High pass RC filters.
- 13. To study series resonance of LCR Circuit.

### **GROUP B** (Any 2)

- 1. Identification of components (Passive and Active) and study of multimeter
  - a. Minimum 10 different types of components are expected.
  - b. Identification based on visual inspection / data sheets.
  - c. Measure the various parameters using multimeter.
- 2. Study of Signal Generator and CRO
  - a. Study of front panel controls.
  - b. Measurement of amplitude, frequency and phase of waveform.
- 3. Perform survey of following topics
  - a. Study of laboratory safety and precautionary measures.
  - b. Study of e-waste management or any relevant topic of Electronics.

| Title of the Course: Practical Course - II |                |                       |           |         |                   |                |     |       |  |
|--------------------------------------------|----------------|-----------------------|-----------|---------|-------------------|----------------|-----|-------|--|
| Year: I Semester: I                        |                |                       |           |         |                   |                |     |       |  |
|                                            | Course<br>Code | Credit Distr          | ribution  |         |                   | Allotted Marks |     |       |  |
| Course<br>Type                             |                | Course<br>Code Theory | Practical | Credits | Allotted<br>Hours |                |     |       |  |
| - ) [ ]                                    |                |                       |           |         |                   | CIE            | ESE | Total |  |
| SEC-01                                     | BS-ES114P      | 00                    | 02        | 02      | 60                | 15             | 35  | 50    |  |

#### Learning Objectives:

- 1. To understand logic gates and their applications in Boolean algebra.
- 2. To comprehend arithmetic circuit design.
- 3. To know digital circuit design for different applications.

#### **Course Outcomes (Cos):**

After completion of the course, the students will be able to,

- 1. Understand the design and build of digital circuits using logic gates.
- 2. Use breadboard / tag-board for building small electronic circuits.
- 3. Use digital circuits for different applications.

#### **Detailed Syllabus:**

#### **GROUP A (Any 10)**

- 1. Verification of logic gates by using digital ICs.
- 2. Realization of basic gates using discrete components.
- 3. Realization of basic gates using universal logic gates.
- 4. Realization of universal gates using discrete components (NAND / NOR).
- 5. Verification of De Morgan's theorems.
- 6. Study of half adder and full adder using logic gates.
- 7. Study of half subtractor and full subtractor using logic gates.
- 8. 4-bit binary parallel adder and subtractor using IC7483.
- 9. 3-bit binary to Gray conversion using logic gates.
- 10. 3-bit Gray to Binary conversion using logic gates.
- 11. Study of EX-OR gate as a 4-bit parity checker.

- 12. Study of EX-OR gate as a 4-bit parity generator.
- 13. Study of 2-bit digital comparator.

### **GROUP B** (Perform any 1 following activity equivalent to 2 practical)

- 1. Circuit simulation software LTSPICE / CircuitMod etc. (Give preference to not performed experiments).
- 2. Perform survey of following topics
  - a. Study of laboratory safety and precautionary measures.
  - b. Study of e-waste management or any relevant topic of Electronics.

| <b>Title of the Course: Evolution of Electronics in India</b> |             |            |              |         |                   |                |     |       |  |  |
|---------------------------------------------------------------|-------------|------------|--------------|---------|-------------------|----------------|-----|-------|--|--|
| Year: I Semester: I                                           |             |            |              |         |                   |                |     |       |  |  |
| Course<br>Type                                                | Course Code | Credit Dis | Distribution |         |                   |                |     |       |  |  |
|                                                               |             | Theory     | Practical    | Credits | Allotted<br>Hours | Allotted Marks |     |       |  |  |
| 51                                                            |             | 5          |              |         |                   | CIE            | ESE | Total |  |  |
| IKS-1                                                         | BS-ES115T   | 02         | 00           | 02      | 30                | 15             | 35  | 50    |  |  |

#### Learning Objectives:

- 1. To learn about evolution of electronics technology in India.
- 2. To understand the problems faced by electronics industries in India.
- 3. To get knowledge of different sectors of Electronic Industry in India.

#### **Course Outcomes (Cos):**

After completion of the course, the students will be able to –

- 1. Understand the role of electronics in India.
- 2. Comprehend the growth of Electronics technology in India.
- 3. Recognize the problems of electronics industries in India.

#### **Detailed Syllabus:**

#### Unit I: The Electronics Technology in India

An Introduction to India, Industrial Development, Economy and Trade. An overview of Indian contributions to technology, Technological Innovations, India's Contribution to the World. The electronic development in India. The growth of various segments of the electronics industry: telecommunications, consumer electronics, computer hardware and software and medical electronic systems. The problems faced by the industries - power, transportation, communication networks and other environmental considerations. Electronics research institutes in India.

(15)

(15)

#### Unit II: Development of Electronics in India

Economic Policy Changes in the Electronics Industry, Advent of Multinational Companies (MNCs), Growth of Consumers, Information for Investors. The Electronics Industry in India - Defense Electronics, Space Technology, Telecommunications, Electronics Development in

India, Personal Computers Industry, Printed Circuit Board Production and Assembly, Integrated Circuits Industry, Color TV Industry, Medical Electronics Industry, Process Control Industry, Information Technology Industry, Software Development in India. Public Sector Companies.

#### **Suggested Readings/Material:**

- 1. The Indian Electronics Industry Dhiraj Bansal, Rajdeep Sharma.
- 2. Indian Contribution to science, compiled by Vijnana Bharati.
- 3. B.V. Subbarayappa, Science in India: A Historical Perspective, Rupa, New Delhi.

| Title of the Course: Analog Device Applications |                |             |           |         |                   |      |         |       |  |
|-------------------------------------------------|----------------|-------------|-----------|---------|-------------------|------|---------|-------|--|
| Year: I Semester: II                            |                |             |           |         |                   |      |         |       |  |
| Course<br>Type                                  | Course<br>Code | Credit Dist | ribution  |         |                   |      |         |       |  |
|                                                 |                | Theory      | Practical | Credits | Allotted<br>Hours | Alle | otted M | larks |  |
| 71                                              |                |             |           |         |                   | CIE  | ESE     | Total |  |
| DSC-04                                          | BS-ES121T      | 03          | 00        | 03      | 45                | 30   | 70      | 100   |  |

#### Learning Objectives:

- 1. To different semiconductor devices.
- 2. To study op-amp parameters and different applications of op-amp.
- 3. To understand the concept of multivibrator (IC-555).
- 4. To study sensors and actuators.

#### **Course Outcomes (Cos):**

After completion of the course, the students will be able to,

- 1. Compare different semiconductor devices like UJT, JFET and MOSFET.
- 2. Understand the operation of op-amp and its various parameters.
- 3. Understand op-amp circuits and their usefulness in different applications.
- 4. Understand the use of sensors and actuators for different applications

#### **Detailed Syllabus:**

#### Unit I: UJT, FET's Basics and Applications

Symbol, types, construction, working principle, I-V characteristics. Specification parameters: Uni-Junction Transistor (UJT), Junction Field Effect Transistor (JFET), Metal Oxide Semiconductor FET (MOSFET). Comparison of JFET and MOSFET.

(12)

Applications: UJT as a Relaxation oscillator, JFET as voltage variable resistor, MOSFET as a switch.

#### Unit II: Operational Amplifier and its Applications (12)

Block diagram, symbol, characteristics of ideal and practical op-amp. The concept of virtual ground, positive feedback and negative feedback. Differential and common mode gain, CMRR. Applications: inverting amplifier, non-inverting amplifier, voltage follower, comparator,

#### Department of Electronic Science, New Arts, Commerce and Science College, Ahmednagar

(07)

(14)

Schmitt Trigger, adder, subtractor, integrator and differentiator. Voltage to current converters with ground load and floating load), Voltage Controlled Oscillator (VCO) or V to F Converter.

#### Unit III: IC 555 and its applications

Introduction, block diagram, pin diagram, features. Applications: astable multivibrator, monostable multivibrator and bistable multivibrator.

#### **Unit IV: Sensors and Actuators**

Basic instrumentation system. Sensors: Definition, active and passive sensors. Specifications of sensors: accuracy, range, linearity, sensitivity, resolution, reproducibility. Temperature sensor (thermistor, LM-35), optical sensor (LDR), Passive Infrared sensor (PIR), PIR Sensor intruder detection system, tilt sensor, ultrasonic sensor, Ultrasonic liquid and solid level detector, Linear variable differential transformer (LVDT).

Actuators: Definition, DC motor, stepper motor.

#### Suggested Readings/Material:

- 1. Sensors and Transducers Prof A.D. Shaligram.
- 2. Op Amp and Linear Integrated Circuits Ramakant Gaykwad.
- 3. Linear Integrated Circuits Roy Choudary.
- 4. Micro Electronics Jacob Millan, McGrawHill.
- 5. Sensors and Transducers D. Patranabis, PHI publication.
- 6. Electronic Devices and Circuits: An Introduction Allan Mottershead, Prentice Hall.

| <b>Title of the Course: Digital Circuits and Computer Organization</b> |                |             |           |         |                   |            |       |       |  |
|------------------------------------------------------------------------|----------------|-------------|-----------|---------|-------------------|------------|-------|-------|--|
| Year: I Semester: II                                                   |                |             |           |         |                   |            |       |       |  |
|                                                                        |                | Credit Dist | ribution  |         |                   |            |       |       |  |
| Course<br>Type                                                         | Course<br>Code | Theory      | Practical | Credits | Allotted<br>Hours | Allotted M | larks |       |  |
| J 1                                                                    |                |             |           |         |                   | CIE        | ESE   | Total |  |
| DSC-05                                                                 | BS-ES122T      | 03          | 00        | 03      | 45                | 30         | 70    | 100   |  |

#### **Learning Objectives:**

- 1. To understand design of combinational circuit and their different types.
- 2. To comprehend design of sequential circuit and their different types.
- 3. To learn organization of digital computer.
- 4. To enhance the knowledge of computer system.

#### **Course Outcomes (Cos):**

After completion of the course, the students will be able to,

- 1. Understand the concept and working of combinational circuits.
- 2. Comprehend the concept and working of sequential circuits.
- 3. Understand the different components of computer system.
- 4. Understand the I/O organization and memory architecture.

#### **Detailed Syllabus:**

#### **Unit I: Combinational Circuits**

Introduction, Multiplexer (2:1, 4:1), demultiplexer (1:2, 1:4) and their applications. Concept of code converters. Encoders: decimal to BCD/binary, hexadecimal to binary, 3x4 matrix keyboard encoder and priority encoder. Decoders: BCD to decimal and BCD to seven segment decoder.

#### **Unit II: Sequential Circuits**

Introduction, Flip flops: RS, clocked RS, JK, D and T. Race around condition, Master-slave JK. Counters: asynchronous and synchronous, binary counter, up, down, up-down counter, modulus counters, decade counter.

(08)

(12)

Shift registers: SISO, SIPO, PISO, PIPO shift registers, ring counter, universal 4-bit shift register.

#### **Unit III: Introduction to Computer System**

Introduction, features, characteristics of computers, block diagram of computer. Types of computers: Minicomputers, Microcomputers, Mainframe computers, Super computers, Laptops and Tablets. Basic anatomy of computer: input and output, control unit, ALU and memory, working of computer. Software: definition, features. Types of software: system software, application software. Types of computer languages: low level, machine level, assembly level, high level.

#### **Unit IV: Computer Organization**

CPU organization: block diagram of CPU, function of CPU. System buses: address, data, control. General register-based CPU organization, flags, ALU. Concept of CISC and RISC. Concept of pipelining. Overview of super-scalar technology.

Memory organization: definition, memory architecture, memory hierarchy, types of memories, data read/write process. Role of cache memory. Concept of virtual memory. Memory management unit.

I/O organization: need of interface, block diagram of general I/O interface. Direct memory access and DMA controller. Interrupt and interrupt controllers.

#### **Suggested Readings/Material:**

- 1. Digital Systems Principles and Applications Ronald J. Tocci, PHI. New Delhi.
- 2. Digital electronics G. K. Kharate, Oxford University Press.
- 3. Digital Fundamentals Floyd T.M., Jain R.P., Pearson Education.
- 4. Digital Electronics Jain R.P., Tata McGraw Hill.
- 5. Digital Logic and Computer Design M. Morris Mano, Pearson Education.
- 6. Computer Organization and Architecture William Stallings, Pearson.
- 7. Computer organization-V. Carl, Zvonko G., Safwat G.Zaky, McGraw-Hill, international ed
- 8. Computer Fundamental by P.K. Sinha Chapters: 1-5, 7-10, 12, 14-16.
- 9. Computer for Beginner by V.P. Jaggi and S. Jain. Chapters: 1, 2, 3, 5, 7

(15)

(10)

| Title of the Course: Practical Course - III |                       |              |           |         |                   |      |       |       |  |
|---------------------------------------------|-----------------------|--------------|-----------|---------|-------------------|------|-------|-------|--|
| Year: I Semester: II                        |                       |              |           |         |                   |      |       |       |  |
|                                             | Course<br>Code Theory | Credit Distr | ribution  |         |                   |      |       |       |  |
| Course<br>Type                              |                       | Theory       | Practical | Credits | Allotted<br>Hours | Alle | larks |       |  |
| - 5 F -                                     |                       | J            |           |         |                   | CIE  | ESE   | Total |  |
| SEC-02                                      | BS-ES123P             | 00           | 02        | 02      | 60                | 15   | 35    | 50    |  |

### Learning Objectives:

- 1. To study and build different op-amp applications.
- 2. To study IC 555 for building different applications.
- 3. To study simulation software for analyzing different electronic circuits.

### **Course Outcomes (Cos):**

After completion of the course, the students will be able to,

- 1. Use OPAMP & IC 555 for building different applications.
- 2. Use simulation software for analyzing different electronic circuits.
- 3. Use breadboard / tag-board for building small electronic circuits.

#### **Detailed Syllabus:**

#### GROUP A (Any 10)

- 1. Use of OPAMP as a comparator.
- 2. Build and test Inverting amplifiers using OPAMP.
- 3. Build and test adder and subtractor circuits using OPAMP.
- 4. Build and test integrator and differentiator using OPAMP.
- 5. Design and build Astable multivibrator using IC 555.
- 6. Design and build monostable multivibrator using IC 555.
- 7. Study of UJT as a Relaxation oscillator.
- 8. To study temperature sensor LM 35.
- 9. Use of LDR to control light intensity.
- 10. Study of FET characteristics.
- 11. Study of LVDT.
- 12.V to I converters by using OP-AMP.

- 13. Build and test non-inverting amplifiers using OPAMP.
- 14. Smith Trigger
- 15. VCO

### **GROUP B** (Perform any 1 following activity equivalent to 2 practical)

- 1. Circuit simulation software LTSPICE / CircuitMod etc. (Give preference to not performed experiments).
- 2. Perform survey of following topics
  - a. Study of laboratory safety and precautionary measures.
  - b. Study of e-waste management or any relevant topic of Electronics.

| Title of the Course: Practical Course - IV |                       |             |           |         |                   |      |         |       |  |  |
|--------------------------------------------|-----------------------|-------------|-----------|---------|-------------------|------|---------|-------|--|--|
| Year: I Semester: II                       |                       |             |           |         |                   |      |         |       |  |  |
|                                            |                       | Credit Dist | ribution  |         |                   |      |         |       |  |  |
| Course<br>Type                             | Course<br>Code Theory |             | Practical | Credits | Allotted<br>Hours | Alle | otted M | larks |  |  |
| J 1                                        |                       |             |           |         |                   | CIE  | ESE     | Total |  |  |
| VSC-01                                     | BS-ES124P             | 00          | 02        | 02      | 60                | 15   | 35      | 50    |  |  |

#### **Learning Objectives:**

- 1. To understand implementation of combinational circuit and their different types.
- 2. To comprehend implementation of sequential circuit and their different types.
- 3. To learn computer hardware by studying motherboard, CPU and peripheral devices.

#### **Course Outcomes (Cos):**

After completion of the course, the students will be able to,

- 1. Understand the concept and working of different combinational circuits.
- 2. Comprehend the concept and working of different sequential circuits.
- 3. Understand the different components of computer system.

#### **Detailed Syllabus:**

#### **GROUP A (Any 10)**

- 1. Study of RS, JK and D flip flops.
- 2. Study of multiplexer and demultiplexer (4:1 & 1:4).
- 3. Study of BCD to seven segment decoder using IC 7447.
- 4. Study of Decimal to BCD/Binary encoder.
- 5. Study of asynchronous up and down counter.
- 6. Study of decade counter using IC 7490.
- 7. Study of 4-bit SISO and SIPO shift register.
- 8. Study of Shift Register using IC 7485.
- 9. Study of Priority encoder.
- 10. Study of read and write action of RAM (using IC 2112/4 or equivalent).
- 11. Study of diode matrix ROM.
- 12. Study of computer hardware system.

- 13. Study of ALU using IC 74181.
- 14. Study of Motherboard and CPU.
- 15. Study of peripheral devices.

#### **GROUP B** (Perform any 1 following activity equivalent to 2 practical)

- 1. Circuit simulation software LTSPICE / CircuitMod etc. (Give preference to not performed experiments).
- 2. Perform survey of following topics
  - a. Study of laboratory safety and precautionary measures.
  - b. Study of e-waste management or any relevant topic of Electronics.
- 3. Assembling and Disassembling of computer system.