Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce, and Science College, Ahmednagar (Autonomous) (Affiliated to Savitribai Phule Pune University, Pune)

National Education Policy (NEP) Choice Based Credit System (CBCS)

Programme Skeleton and Syllabus of B.Sc. Statistics (Major)

Implemented from

Academic Year 2024-25

ibution. D.Sc. Statistics (Major) meruum	is minu		Junci courses.
Type of Courses	III	IV Yrs	IV Yrs
	Yr	(Honours)	Research
Discipline-Specific Courses (DSC)	46	74	66
Discipline Specific Elective (DSE)	08	16	16
Skill Enhancement Courses (SEC)	06	06	06
Vocational Skill Courses (VSC)	08	08	08
On-Job Training (OJT)	04	08	04
Field Project (FP)	04	04	04
Community Engagement and Service	02	02	02
(CEP)			
Research project	00	00	12
Research Methodology	00	04	04
Indian Knowledge System	02	02	02
Total (I, II and III Year)	80	124	124
Minor	20	20	20
Open Elective (OE)/ Multidisciplinary	12	12	12
Courses			
Co-Curricular Courses	08	08	08
Ability Enhancement Courses	08	08	08
Value Education Courses	04	04	04
Total	132	176	176
	Type of CoursesDiscipline-Specific Courses (DSC)Discipline Specific Elective (DSE)Skill Enhancement Courses (SEC)Vocational Skill Courses (VSC)On-Job Training (OJT)Field Project (FP)Community Engagement and Service(CEP)Research projectResearch MethodologyIndian Knowledge SystemTotal (I, II and III Year)MinorOpen Elective (OE)/ MultidisciplinaryCoursesCo-Curricular CoursesAbility Enhancement CoursesValue Education CoursesTotal	Type of CoursesIII YrDiscipline-Specific Courses (DSC)46Discipline Specific Elective (DSE)08Skill Enhancement Courses (SEC)06Vocational Skill Courses (VSC)08On-Job Training (OJT)04Field Project (FP)04Community Engagement and Service (CEP)02Research project00Research Methodology00Indian Knowledge System02Total (I, II and III Year)80Minor20Open Elective (OE)/ Multidisciplinary Courses08Ability Enhancement Courses08Value Education Courses04Total132	Type of CoursesIIIIV YrsTyrYr(Honours)Discipline-Specific Courses (DSC)4674Discipline Specific Elective (DSE)0816Skill Enhancement Courses (SEC)0606Vocational Skill Courses (VSC)0808On-Job Training (OJT)0404Community Engagement and Service0202(CEP)0000Research project0000Research Methodology0004Indian Knowledge System0202Total (I, II and III Year)80124Minor2020Open Elective (OE)/ Multidisciplinary Courses1212Co-Curricular Courses0808Value Education Courses0404Total132176

Credit Distribution: B.Sc. Statistics (Major) including Minor and OE and other courses.

B. Sc. Programme Framework: Credit Distribution

Y	S	L						Ma	jor					Μ	0		С	Α	V	Т
e	e	e	Ι)	Ι)	SE	EC	VS	SC	F	Р	Ι	i	E		С	E	E	0
a	m	V	5	5	5	5					/(C	K	n				C	C	t
r	e	e	(2	H	Ξ					J	Т	S	0						a
	st	1					/IN/C EP						r						1	
	e										E	P								
	r																			
Ι	Ι	4.	Т	Ρ	Т	Ρ	Т	Ρ	Т	Р	Т	Ρ		T/P	-		-	-	-	-
		5																		
Ι	II	4.	4	2	Т	-	I	2	-	-	-	-	2	03	3		2	2	2	22
		5																		
			6	-	-	-		2	-	2	_	-		03	3		2	2	2	22
Ex	it Opti	on: A	wai	rd o	f U	GC	erti	fica	te ir	n Ma	ajor	with	n 44 c	redits	and a	ın	addit	ional	4 cre	dit
	Ĩ	CO	re N	ISQ	Fcc	ours	e /Iı	nter	nshi	ip o	r Co	ntin	ue wi	th Ma	jor aı	nd	Minc	or		
			1	1	1	1	1	1	1		1		1							
II	III	5.	6	2	-	-		2	-	-	-	2		03	3		2	2	-	22
		0																-		
II	IV	5.	6	2	-	-		-	-	2	-	2		03	3		2	2	-	22
		0																		
E	xit Op	tion: A	Awa	ard o	of U	IG I	Dipl	om	a in	Ma	jor v	vith	88 cr	edits a	and a	n a	dditi	onal 4	4 cred	lit
		co	re N	1SQ	Fc	ours	se /I	nter	nsh	ip o	r Co	ontin	ue w	ith ma	jor aı	nd	mino	r		
III	V	5	0	2	2	2			1	2		2		04						22
111	V	Э. 5	ð	2	2	2	-	-	-	2		2		04	-	-	-	-	-	22
TTT	X/I	5		2	2	2				2		4		0.4						22
111	VI	5.	0	2	2	2	-	-	-	2		4		04	-	-	-	-	-	22
		5																		

						Ľ	Depar	tme	nt of	Stati	istics,	New	Arts, C	Comn	nerce d	and	Sci	ence C	ollege,	Ahmed	Inagar
Ex	it Opti	on: A	wa	rd o	f U	G D	egre	ee ii	n M	ajor	and	l Mi	nor w	vith	132 0	cre	dit	s or c	contin	ue w	ith
	Major for a 4-year Degree																				
TT 7	IV VII 6. 8 6 2 2 RM 22																				
IV	VII	6.	8	6	2	2	RN	VI-	-	-	-	-		-	-	-	-	-	-	-	22
		0					4	-													
IV	VII	6.	8	6	2	2	-	-	-	-	-	4		-	-	-	-	-	-	-	22
	Ι	0																			
	I 0 Four Year UG Degree(Honours) with Major and Minor with 176 credits																				
IV	VII	6.	6	4	2	2	RN	/ -	-	-	-	4		I.	-	I	I	-	-	-	22
		0					4	ŀ													
IV	VII	6.	6	4	2	2	-	-	0	-	-	8		-	-	-	-	-	-	-	22
	Ι	0																			
Fo	our Ye	ar UC	3 De	egre	e (H	Ion	ours	wit	h R	lese	arch) wi	th Ma	ijor	and	Mi	no	r witl	h 176	credi	ts

B. Sc. Programme Framework: Course Distribution

	S							Maj	or		•									
Y e a r	e m e st e r	L e v e l	П 2 (0 8 2	I S H	D B E	SF	EC	VS	SC	F /(J' /II CH	P O T N/ EP	I K S	N in o	/I n or	O E	C C	A E C	V E C	T o t a l
Ι	-	-	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р		Т	Р	-	-	-	-	-
Ι	Ι	4. 5	2	1	-	-	-	1	-	-	-	-	1]		1	1	1	1	10
	Π	4. 5	2	-	-	-		1	-	1	-	-]	l	1	1	1	1	09
E	xit Op	tion:	Aw	ard	of U	JG (Cert	ific:	ate i	in M 1150	lajo /Int	r wit	th 44 hin o	cree r Co	dits onti	and an	n addi	itiona	l 4 cr	edit
Π	III	5. 0	2	1	-	-		1	-	-	-	1]	[1	1	1	-	09
II	IV	5. 0	2	1	-	-		-	-	1	-	1]	[1	1	1	-	09
Ex	kit Opt	ion: A co	Awa re N	rd o ISQ	of U F co	G E ours	Diplo e /I	oma nter	in I nshi	Maj ip o	or w r Co	vith a ontin	88 cre ue wi	edits ith r	s an najo	d an \a or and	additi mino	onal 4 or	4 crea	lit
III	V	5. 5	2	1	1	1	-	-	-	1		1]	l	-	-	-	-	08
III	VI	5. 5	2	1	1	1	-	-	-	1		1]	l	-	-	-	-	08
Ex	it Opti	on: A	wai	rd o	f U(G D	egre M	ee ir Iajo	n Ma r fo	ajor r a ∠	and 4-yea	Min ar D	nor w egree	vith	132	credit	s or c	contin	iue w	ith

Department of Statistics	, New Arts,	Commerce and	Science	College,	Ahmednagar
--------------------------	-------------	--------------	---------	----------	------------

IV	VII	6. 0	3	3	1	1	0	1	-	-	-	-		-	-		-	-	-	-	09
IV	VII I	6. 0	3	3	1	1	-	-	-	-	-	1		-	-	-	-	-	-	-	09
	F	Four	Year	UC	G De	egre	e(H	lonc	ours) wi	th M	lajo	r and	Mi	nor	wit	h 1	76 cr	edits		
IV	VII	6. 0	2	2	1	1	0	1	-	-	-	1		-	-	-	-	-	-	-	08
IV	VII I	6. 0	2	2	1	1	-	-	-	-	-	1		-	-	-	-	-	-	-	07
Fo	our Yea	ar UC	3 De	egre	e (H	Iono	ours	wit	h R	esea	arch) wi	th Ma	ajor	and	M	ino	r witl	n 176	credi	its

Programme Framework	(Course Distributio	on): B.Sc. Sta	atistics (Major)
----------------------------	---------------------	----------------	------------------

								N	Majo	r				Te	otal
Y e	Se me	L e v	D (S C	D I	e S E	SEC	С	VS	С	FP/0 /IN/Cl R	OJT EP/P	IKS		
r r	r	е 1	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Т	P/P R
Ι	Ι	4.5	2	1	-	-	-	1	-	-	-	-	01	03	02
Ι	II	4.5	2	-	-	-		1	-	1	-	-		02	02
II	III	5.0	2	1	-	-		1	-	-	-	1		02	03
II	IV	5.0	2	1	-	-		-	-	1	-	1		02	03
III	V	5.5	2	1	1	1	-	-	-	1		1		03	04
III	VI	5.5	2	1	1	1	-	-	-	1		1		03	04
			•				B.Sc	. Ho	nour	s					
IV	VII	6.0	3	3	1	1	RM	1 -1	-	-	-	-		05	04
IV	VIII	6.0	3	3	1	1	-	-	-	-	-	1		04	05
			•		B.\$	Sc. H	lonoi	irs w	ith F	Resea	urch				
IV	VII	6.0	2	2	1	1	RM	1 -1	-	-	-	1		04	04
IV	VIII	6.0	2	2	1	1	-	-	-	-	-	1		03	04

Y	Sem	L						Maj	or					Т
ea r	ester	ev el	DS	SC	D	SE	SEC		VSO	2	FP/ /IN/C	OJT EP/R	IK S	o t a l
			Т	Р	Т	Р	Т	Т	Р	Т	Р	Т		
Ι	Ι	4.5	4	2	-	-	-	2	-	-	-	-	02	10
Ι	II	4.5	6	-	-	-		2	-	2	-	-		10
II	III	5.0	6	2	-	-		2	-	-	-	2		12
II	IV	5.0	6	2	-	-		-	-	2	-	2		12
III	V	5.5	8	2	2	2	-	-	-	2		2		18
III	VI	5.5	6	2	2	2	-	-	-	2		4		18
IV	VII	6.0	8	6	2	2	RM -4		-	-	-	-		22
IV	VIII	6.0	8	6	2	2	-	-	-	-	-	4		22
IV	VII	6.0	6	4	2	2	RM -4	-	-	-	-	4		22
IV	VIII	6.0	6	4	2	2	-	-	-	-	-	8		22

Programme Framework (Credit Distribution): B.Sc. Statistics (Major)

Programme Framework (Courses and Credits): B.Sc. Statistic (Major)

Sr.		Semest	Level	Course	Course	Title	Cre
No.	Year	er		Туре	Code		dits
1.	Ι	Ι	4.5	DSC-1	BS-	Descriptive Statistics -I	02
					ST111T		
2.	Ι	Ι	4.5	DSC-2	BS-	Basics of Probability	02
					ST112T		
3.	Ι	Ι	4.5	DSC-3	BS-	Practical –I	02
					ST113P		
4.	Ι	Ι	4.5	SEC-1	BS-	Computational Tool-I	02
					ST114P	(MS-Excel)	
5.	Ι	Ι	4.5	IKS-1	BS-	Statistical Heritage and	02
					ST115T	Systems in India	
6.	Ι	II	4.5	DSC-4	BS-	Descriptive Statistics -II	03
					ST121T	-	
7.	Ι	II	4.5	DSC-5	BS-	Discrete Probability	03
					ST122T	Distributions and Index	
						Number	
8.	Ι	II	4.5	SEC-2	BS-	Practical –II	02
					ST123P		
9.	Ι	II	4.5	VSC-1	BS-	Computational Tool –II	02
					ST124P	(Introduction to R)	
10.	II	III	5.0	DSC-6	BS-	Continuous Probability	03
					ST231T	Distributions -I	

11.	II	III	5.0	DSC-7	BS-	Discrete Probability	03
					ST232T	Distributions and	
						Regression	
12.	II	III	5.0	DSC-8	BS-	Practical-III	02
					ST233P		
13.	II	III	5.0	SEC-3	BS-	Computational Tool–III	02
					ST234P	(C Programming)	
14.	II	III	5.0	FP-01	BS-	Field Project/ Internship	02
					ST235P		
15.	II	IV	5.0	DSC-9	BS-	Continuous Probability	03
					ST241T	Distributions-II	
16.	II	IV	5.0	DSC-	BS-	Statistical Methods and	03
				10	ST242T	Demography	
17.	II	IV	5.0	DSC-	BS-	Practical-IV	02
				11	ST243P		
18.	II	IV	5.0	VSC-2	BS-	Computational Tool -IV	02
					ST244P	(Introduction to Python)	
19.	II	IV	5.0	CEP-01	BS-	CEP	02
					ST245P		
20.	III	V	5.5	DSC-	BS-	Distribution Theory	04
				12	ST351T		
21.	III	V	5.5	DSC-	BS-	Design of Experiments	04
				13	ST352T		
22.	III	V	5.5	DSC-	BS-	Practical-V	02
				14	ST353P		
23.	III	V	5.5	DSE-01	BS-	Operation Management /	02
					ST355T	Actuarial Statistics	
24.	III	V	5.5	DSE-02	BS-	Practical- VI	02
					ST356P		
25.	III	V	5.5	VSC-3	BS-	Computational Tool-V	02
					ST357P	(Data Analytics)	
26.	III	V	5.5	FP-02	BS-	Field Project / Internship	02
					ST358P		
27.	III	VI	5.5	DSC-	BS-	Theory of Estimation	03
				15	ST361T		
28.	III	VI	5.5	DSC-	BS-	Testing of Hypotheses	03
				16	ST362T		
29.	III	VI	5.5	DSC-	BS-	Practical -VII	02
				17	ST363P		
30.	III	VI	5.5	DSE-03	BS-	Sampling Theory /	02
					ST364T	Statistical Ecology	
31.	III	VI	5.5	DSE-04	BS-	Practical VIII	02
					ST365P		
32.	III	VI	5.5	VSC-4	BS-	Computational Tool–VI	02
					ST366P	(Advanced Excel)	
33.	III	VI	5.5	OJT-01	BS-	-	04
					ST367P		

			-		-	-	
03	Linear Algebra	BS-ST471T	DSC-18	6.0	VII	IV	34.
03	Probability Distributions	BS-ST472T	DSC-19	6.0	VII	IV	35.
02	Sampling Theory and Methods	BS-ST473T	DSC-20	6.0	VII	IV	36.
02	Practical IX	BS-ST474P	DSC-21	6.0	VII	IV	37.
02	Practical X (Reliability Theory)	BS-ST475P	DSC-22	6.0	VII	IV	38.
02	Practical XI	BS-ST476P	DSC-23	6.0	VII	IV	39.
02	Exploratory Multivariate Analysis/ Data Mining	BS-ST477T	DSE-05	6.0	VII	IV	40.
02	Practical XII	BS-ST478P	DSE-06	6.0	VII	IV	41.
04	Research Methodology	BS- ST479T/P	RM-01	6.0	VII	IV	42.
03	Statistical Inference	BS-ST481T	DSC-24	6.0	VIII	IV	43.
03	Regression Analysis	BS-ST482T	DSC-25	6.0	VIII	IV	44.
02	Probability Theory	BS-ST483T	DSC-26	6.0	VIII	IV	45.
02	Practical XIII (Based on Statistical Process and Product Control)	BS-ST484P	DSC-27	6.0	VIII	IV	46.
02	Practical XIV	BS-ST485P	DSC-28	6.0	VIII	IV	47.
02	Practical XV (Based on Numerical Analysis)	BS-ST486P	DSC-29	6.0	VIII	IV	48.
02	Inferential Multivariate Analysis / Categorical Data Analysis	BS-ST487T	DSE-07	6.0	VIII	IV	49.
02	Practical XVI	BS-ST486P	DSE-08	6.0	VIII	IV	50.
04	RST	BS-ST487P	OJT-02	6.0	VIII	IV	51.

B.Sc. Statistic (Major with Honours)

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's

New Arts, Commerce and Science College, Ahmednagar (Autonomous)

Board of Studies in Statistics

Sr. No.	Name	Designation		
1.	Dr. A. A. Kulkarni	Chairman		
2.	Dr. B. K. Thorve	Member		
3.	Prof. K. B. Mane	Member		
4.	Prof. B. P. Kharat	Member		
5.	Prof. M. Z. Shaikh	Member		
6.	Prof. S. S. Bansode	Member		
7.	Prof. S.S. Dhadiwal	Member		
8.	Prof. V. V. Khajekar	Member		
9.	Prof. D. D. Kale	Member		
10.	Dr. S.D Jagtap	Member		
11.	Dr. B.P. Thakur	Member		
12.	Prof. S.A Tarate	Member		
13.	Dr.N.T Shelke	Member		
14.	Dr. A.K. Khamborkar	Academic Council Nominee		
15.	Dr. A.J. Shivagaje	Academic Council Nominee		
16.	Prof. S. Kawale	Vice-Chancellor Nominee		
17.	Dr. S.B.Pathare	Alumni		
18.	Mr. Anirudha Deshmukh	Industry Expert		
19.	Mr. Vijay Narkhede	Invited Member		

1. Prologue/ Introduction of the programme:

It is known that in economic activities are of three types, agriculture, industrial and service. In the same way the subject Statistics is a SERVICE SCIENCE having potential to address the problems in these three fields. In research application of Statistics is mandatory. In the present days, apart from traditional field of career, Data Science, Data Analytics, Data Mining, Data Visualization are the upcoming field of career for Statistics students. In these field student must have mathematical ability, statistical thinking, computer (Software and programming) knowledge and communication (Verbal and written). These points are taken into consideration to design the syllabus and examination pattern of Statistics. In addition to academics, the department takes care to arrange a series of lectures on interview skills, preparation of CV, improve communication skill and overall personality development. The students are given the task of event management so that they can practice the principles of management such as leadership, creativity, communication, time management, group activity, team work, etc. In general, through curricular, co-curricular and extracurricular activities student in three years is developed as thought provoker, problem solver, technologically sound, with command on communication, strong selfconfidence.

B. Sc. in Statistics program is of three years' duration, with semester pattern for all the three years. The important feature of the syllabus is that, all practical's form first year to third year will be conducted on computer using MS-EXCEL/ R Suit, Python programming and Tableau.

The course on Tableau will give an opportunity to learn thousands of various data presentation types and to present the complex data by easy way. The practical examinations of all courses will be on computer. In short, maximum exposure is given to students to work on computer and evaluate them on computer.

The syllabus is framed with appropriate weightage of theory, applied and skill enhancement courses. After receiving B.Sc. degree, student is expected to have minimum knowledge of various courses and student will have ability to analyze the data with relevant interpretation of results. After completion of B.Sc. honours students get maximum knowledge about statistics, so that student can handle any big data.

9

2. Programme Outcomes (POs)

Students enrolled in the program complete a curriculum that exposes and trains students in a full range of essential skills and abilities. They will have the opportunity to master the following objectives.

- 1. Student will achieve the skill of understanding the data.
- 2. Student will be able to develop the data collection instrument.
- 3. Student will have skill to write a story using data visualization.
- 4. Student will understand the interdisciplinary approach to correlate the statistical concepts with concepts in other subjects.
- 5. Student will be made aware of history of Statistics and hence of its past, present and future role as part of our culture.
- 6. Students will demonstrate conceptual domain knowledge of the Statistics in an integrated manner.
- 7. Student will play the key role in management for effective functioning.

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's

New Arts, Commerce and Science College, Ahmednagar

(Autonomous)

Syllabus

B.Sc. Statistics (Major)

Title of the Course: Continuous Probability Distributions-I								
Year: II			Sen	nester: III				
Course	Course Code	Credit Distr	ribution	Credits	Allotte	Alle	otted M	Iarks
Type		Theory Practi			d Hours			
						CIE	ES	Total
							E	
DSC-6	BS-ST231T	03	00	03	45	30	70	100

Learning Objectives:

- 1. The students learn the Scope of statistics in different fields.
- 2. They can understand about distributions on continuous scale.
- 3. They can learn different applications of continuous distributions in real life.
- 4. They can learn the use of continuous distributions on R.

Course Outcomes (COs):

- a. On completion of this course students will get in depth knowledge of general concepts of univariate and bivariate probability distributions.
- b. Students will get sound knowledge of a probability distributions with lot of applications in industrial field.
- c. Students will get the complete idea about probability distributions that helps the comparison and to draw the inference.
- d. Practice of learning of different concepts in this course using R coding will improve their logical thinking.

Detailed Syllabus:

Unit-I		General Concepts in Continuous Univariate Distributions	12L
	1.1	Continuous sample space: Definition, illustrations.	
		Continuous random variable: Definition, probability density	
		function (p.d.f.), cumulative distribution function (c.d.f.), properties	
		of c.d.f., and probabilities of events related to random variable.	
	1.2	Expectation of continuous r.v., expectation of function of r.v., $E[g(X)]$,	
		mean, variance, geometric mean, harmonic mean, median, mode, Partition	
		values: Quartiles (Q ₁ , Q ₂ , Q ₃), Deciles, Percentiles. Raw and central	
		moments, skewness, kurtosis, mean deviation about constant, about mean,	
		about median, about mode.	
	1.3	Moment Generating Function (M G F): Definition, Properties, Deriving	
		the first four raw moments from MGF. Cumulant Generating	
		Function(C.G.F.) : Definition. Properties. deriving the first four central	
		moments from CGF.	
	1.4	Probability distribution of function of r.v. Y=g(X) using	
		i) Jacobian of transformation for g(.) monotonic function and one-	
		to-one, on to function,	
		ii) Distribution function for $Y = X^2$, $Y = X $ etc.	
		iii) M.G.F. of $g(X)$.	

Unit- II		General Concepts in Continuous Bivariate Distributions	13L			
	2.1	Continuous bivariate random vector or variable (X, Y): Joint p. d. f., joint c. d. f, properties, probabilities of events related to random variables (events in terms of regions bounded by regular curves, circles, straight lines), marginal and conditional distributions.				
	2.2	Expectation of bivariate r.v. (X,Y) , expectation of function of bivariate r.v. E[g(X,Y)], joint moments, $Cov(X,Y)$, $Corr(X,Y)$, independence of random variables, conditional means ($E(X Y = y)$ and $E(Y X = x)$), conditional variance, $E[E(X Y = y)] = E(X)$ and $E[E(Y X = x)] = E(Y)$, regression as a conditional expectation i.e. $E(X Y = y) = a + by$ and $E(Y X = x) = a' + b' x$. Theorems on expectation: 1) $E(X + Y) = E(X) + E(X)$ 2) $E(XY) = E(X)E(Y)$, if X and Y are independent 3) $E(X_1 * X_2 * X_3 *** X_k) = E(X_1) * E(X_2) *** E(X_k)$ 4) $E(aX + bY + c) = a E(X) + b E(Y) + c$ 5) $V(aX + bY + c) = a^2 Var(X) + b^2 Var(Y) + 2 ab Cov(X,Y)$ 6) $V(aX + bY + c) = a^2 Var(X) + b^2 Var(Y)$, if X and Y are independent				
	2.3	Moment generating function (MGF) $M_{(X,Y)}(t_1, t_2)$, MGF of marginal distribution of random variables(r.v.s.), Proof of the following properties. 1) $M_{(X,Y)}(t_1, t_2) = M_{(X,Y)}(t_1, 0) * M_{(X,Y)}(0, t_2)$ if X and Y are independent r.v.s. 2) $M_{(X+Y)}(t, t) = M_{(X,Y)}(t, t)$ 3) $M_{(X+Y)}(t, t) = M_X(t) * M_Y(t)$ X and Y are independent Probability distribution of transformation of bivariate r. v.				
Unit-III		Uniform or Rectangular Distribution				
		Probability density function (p.d.f.) $f(x) = \begin{cases} \frac{1}{(b-a)}, & a \le x \le b \\ 0, & Otherwise \end{cases}$ Notation: X o U [a, b] p. d. f., sketch of p. d. f. & c. d. f., mean, median, mode, variance, standard deviation, C.V., symmetry, M.G.F. and C.G.F., first four raw moments based on M.G.F. and four central moments based on C.G.F., quartiles, deciles and percentiles. Measures of skewness and kurtosis based on moments and quartiles. Distributions of i) $\frac{X-a}{b-a}$, ii) $\frac{b-X}{b-a}$, iii) Y=F(X), where F(X) is the c. d. f. of continuous r. v. X. Model sampling from Uniform distribution. Distributions of X+Y, X-Y				
Unit-IV		Normal or Gaussian Distribution	15L			
		Probability density function (p. d. f.) $f(x) = \begin{cases} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}} (\frac{x-\mu}{\sigma})^2, & -\infty < X, \mu < \infty, \sigma > 0 \\ 0, & Otherwise \end{cases}$ Notation: X~ N (μ , σ^2) P. d. f. curve, identification of scale and location parameters, nature of probability curve, mean, median, mode, variance, standard deviation, C.V., M.G.F., C.G.F., central moments, cumulants, skewness, kurtosis, quartiles,				

deciles, percentiles, points of inflexion of probability curve, mean	
deviation, additive property, probability distribution of : i) $\left(\frac{x-\mu}{\sigma}\right)$ Standard	
Normal Variable (SNV), ii) aX+b, iii) aX+bY+c where X and Y are	
independent normal variates. Probability distribution of \overline{X} , the mean of n	
i.i.d. N(μ , σ^2) r. v s., computations of normal probabilities using R.	
Central Limit Theorem (CLT) for r.v.s. with finite variance (statement	
only), its illustration for Poisson and Binomial distributions. Box-Muller	
transformation and normal probability plot.	

Suggested Readings:

- 1. Fundamentals of Mathematical Statistics, by Gupta and V.K. Kapoor.
- 2. Continuous Univariate Distributions 1, by Norman L. Johnson and Samuel Kotz

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's

New Arts, Commerce and Science College, Ahmednagar (Autonomous)

Syllabus

B.Sc. Statistics (Major)

Title of the Course: Discrete Probability Distributions and Regression									
Year: II				Sem	Semester: III				
Course	Course Code	Credit Distribution			Credits	Allotte	Allotted Marks		Iarks
Туре		Theory Pract		ical		d Hours			
							CIE	ES	Total
								E	
DSC-7	BS-ST232T	03	00)	03	45	30	70	100

Learning Objectives:

- 1. They can learn uses of different discrete probability distribution in real life.
- 2. They can calculate the probability of success based on number of trials required.
- 3. To fit and model multivariate data using regression concept.
- 4. To estimate and predict the regression coefficients.

Course Outcomes (COs):

- a. On completion of this course students will get in depth knowledge of general concepts of bivariate probability distributions.
- b. Students will get sound knowledge of a probability distributions with lot of applications in industrial field.
- c. Students will get the complete idea about bivariate probability distributions that helps the comparison and to draw the inference.
- d. Practicing learning of different concepts in this course using R coding will improve their logical thinking.

Detailed Syllabus:

Unit-I		Poisson Distribution	10L
	1.1	Poisson Distribution: Poisson distribution as a model for the situations	
		where chances of occurrence of an event in a short time interval is with high	
		probability, real life situations, definition of Poisson distribution, Notation,	
		mean and variance, MGF, deduction of raw and central moments from MGF,	
		CGF, all the cumulants are equal for the Poisson distribution, central	
		moments using CGF, coefficient of skewness and kurtosis, interpretation	
		from these coefficients, nature of distribution $as m \rightarrow \infty$, additive property,	
		generalization of additive property, conditional distribution of X_1 given X_1 +	
		$X_2 = n$, Recurrence relation for the probabilities of Poisson distribution,	
		Poison distribution as a limiting form of binomial distribution, fitting of	
		Poisson distribution, mode of Poisson distribution.	
Unit-II		Geometric distribution and Negative Binomial Distribution	12L
	2.1	Geometric distribution: Genesis of p.m.f. of geometric distribution (for	
		both forms), definition of Geometric distribution, Notation, Geometric	
		distribution as waiting time distribution, mean, variance, mode, relation	
		between mean and variance, moment generating function, deduction of mean	
		and variance from MGF, CGF, deduction of first four central moments from	

		CGF, recurrence relation between probabilities, distribution function, Lack of memory property and its interpretation, real life applications.	
	2.2	Negative Binomial Distribution (NBD) : Sum of two (or more) geometric random variables as a NBD, derivation of p.m.f. of negative binomial distribution, mean, variance, relation between mean and variance, factorial moments, MGF, CGF, deduction of mean, variance and third central moment from CGF, coefficient of skewness, additive property of NBD.	
Unit-III		Multinomial Distribution	08L
	3.1	Genesis of the Multinomial distribution,	
		Joint p.m.f. of $(X_1, X_2,, X_k)$	
		$P(X_1 = x_1, X_2 = x_2, \dots, X_k = x_k) = \frac{n!}{\prod_{i=1}^k x_i!} \prod_{i=1}^k p_i^{x_i},$	
		$x_i = 01, 2, \dots, n, \sum_{i=1}^n x_i = n,$	
		$0 \le p_i \le 1$ and $\sum_{i=1}^n p_i = 1$	
		Notation: $(X_1, X_2, \dots, X_k) \sim MD$ (n, p ₁ , p ₂ ,, p _k), verification of joint p.m.f., real life situations.	
	3.2	MGF, PGF and CGF of multinomial distribution, Moment from MGF and CGF, Variance-Covariance Matrix, Correlation matrix.	
	3.3	Marginal distribution, conditional distribution, Conditional mean and conditional variance, Additive property, numerical examples.	
Unit-IV		Multiple Linear Regression and Model	15L
	4.1	Introduction to multiple regression, trivariate sample data and Notations, correlation matrix, fitting of regression plane by the method of least squares; obtaining normal equations, solutions of normal equations. Interpretation of regression coefficients, Properties of regression coefficients, Residuals, order of residuals, Properties of residuals, variance of residuals. Real life applications of mulmultiple regression.	
	4.2	Definition of multiple correlation coefficient. Derivation of the expression for the multiple correlation coefficient. Properties of multiple correlation coefficient (All six properties), Adjusted R –square, coefficient of multiple determination and its interpretation as proportion of variation explained by the linear regression, use of coefficient of multiple determination for variable selection,	
	4.3	Definition and interpretation of partial regression coefficients, its Properties of partial correlation coefficient (All six properties). Partial coefficient of determination.	

Suggested Readings:

- 1. Fundamentals of Mathematical Statistics, Gupta and V.K. Kapoor. Sultan Chand Publication.
- 2. Discrete Multivariate Distributions, Norman L. Johnson, Samuel Kotz and N. Balakrishnan.
- 3. Introduction to Linear Regression. D. C. Montomery.

Title of the Course: Practical III								
Year: II			Sem	nester: III				
Course	Course Code	Credit Distr	ribution	Credits	Allotte	Alle	otted M	Iarks
Туре		Theory	Practical		d Hours			
						CIE	ES	Total
							E	
DSC-8	BS-ST233P	00	02	02	30	15	35	50

List of Practical:

Sr.	Title of the Practical	No. of
No.		Practical's
1	Fitting of Poisson and Test of Goodness of Fit.	01
2	Fitting of Geometric Distribution and Test of Goodness of Fit.	01
3	Fitting of Negative Binomial Distribution and Test of Goodness of Fit.	01
4	Application of Poisson, Geometric and Negative Binomial Distribution	01
5	Applications of Uniform & Multinomial Distribution.	01
6	Model sampling from the given distributions & Normal Distribution (using	01
	Box-Muller Transformation and Distribution Function method)	
7	Applications of Normal distribution	01
8	Fitting of Normal distribution, computation of expected frequencies,	01
	Goodness of fit test.	
9	Fitting of multiple regression plane.	01
10	Calculation of partial and multiple regression coefficient.	01
11	Short project equivalent to TWO practical's in a group of size 4 to 5	02
	students	
	Total	12

Title of the Course: Computational Tool- III (C Programming)								
Year: II Se				nester: III				
Course	Course Code	Credit Distr	Credits	Allotte	Alle	otted M	Iarks	
Type		Theory	Theory Practical		d Hours			
						CIE	ES	Total
							E	
SEC-3	BS-ST234P	00	02	02	30	15	35	50

Theory to be Covered:

Unit-I		C fundamentals and Control Structures
	1.1	
		Introduction-Getting Started with C, Working and installation of turbo C and Dev- C++ Algorithms and flowcharts, Introduction to procedural language, middle level language, higher level language, general language structure, character set, keywords, identifiers, comments, instructions. Data types: Numeric and character data types, Numeric and character constants, string constants, symbolic constants. Operators: Numeric, logical, arithmetic, unary, relational, equality, decrement, increment, conditional assignments, precedence of operator expressions and their evaluation. Data input/output, numeric and character data, printf(), scanf(), etchar(
	1.2	Control Structures: Introduction- Importance and Uses. If, if else, while, do while, for, switch, goto, break, continue, nested loops, programs using control structures.
Unit II		Arrays, Functions and Pointers
	2.1	Array: Introduction & Concept. declaration, definition, initialization of array, problem using arrays, passing to function, arrays. String operations, string functions like strcpy(), strcat(), strlen(), strcmp(), strrev().
	2.2	Functions and Pointers: Functions: Introduction, Declaration, definition, recursion, user defined functions, library function, calling a function by reference and by value, local and global variables. Pointers: Introduction, Basic concept and relation to one dimensional array.

List of Practical:

Sr. No		Title of the Practical	No. of Practical's
1	Intro	duction to C	01
2	C fur	idamentals	02
	i.	Converting °C temperature to °F	
	ii.	To carry out arithmetic calculations (addition, subtraction,	
		multiplication, division).	
	111.	To find area and perimeter of triangle, rectangle and square.	
3	10 III Cont	rol Structures	02
5	i	To find roots of quadratic equation and print the outputs according to	02
	1.	Discriminant using switch and do while operations	
	::	To shock whether siver number is odd or even	
	11. :::	To check whether given number m is divisible by n or not	
	· · · · ·	To check whether given humber in is divisible by n or not.	
	IV.	To the maximum of 2 numbers of 3 numbers.	
	V.	To check whether integer is prime or not.	
4	Arra	ys	
	i.	To find arithmetic mean, geometric mean, harmonic mean, median,	03
		variance and coefficient of variation of frequency distribution and	
		raw data.	
	ii.	To find correlation coefficient and least square regression line of Y	
		on X for a given bivariate data.	
	iii.	To arrange the given data in increasing/decreasing order of	
		magnitude.	
	iv.	To obtain addition of two matrices, multiplication of two matrices.	
	V.	To test palindrome string using string function.	
	vi.	To sort a string using string function.	
	vii.	To search string using string function.	
	viii.	To combine given two strings using string function.	
	ix.	To copy the string using string copy function.	
	X.	To find the length of the given string using string length function (strlen()).	
	xi.	To reverse the given string using string reverse function (strrev()).	
	xii.	To concatenates destination and source string (streat()).	
	xiii.	To compare two strings using string compare function (strcmp()).	
5	Func	tions	01
	1.	To find factorial of integer number (both recursive and non-recursive).	
	ii.	To find the value of X_n where n is integer (both recursive and non-	
		recursive).	
	iii.	To prepare a 2X2 contingency table for chi square test and to find the	
		value of test statistic and to check whether two attributes are independent.	

	iv.	To fit a Binomial distribution to given data.	
6	Point	02	
	i.	To print the address of the stored variable.	
	ii.	To print addition/ subtraction of two numbers using pointers.	
	Total		11

				(<u></u>	,					
Title of	Title of the Course: Continuous Probability Distributions-II									
Year: II Semester: IV										
Course	Course Code	Credit Distr	ribution	Credits	Allotte	Alle	otted M	Iarks		
Type		Theory	Practical		d Hours					
						CIE	ES	Total		
							E			
DSC-9	BS-ST241T	03	00	03	45	30	70	100		

Learning Objectives:

- 1. The students learn the different tests of statistics.
- 2. They understand about various sampling distributions.
- 3. They understand about various continuous distributions used in real life.

Course Outcomes (COs):

- a. On completion of this course students will get in depth knowledge of theoretical background of exact statistical tests.
- b. Students will understand the basic difference between various sampling distributions.
- c. Students will understand the difference between probability distributions and sampling distributions.

Detailed Syllabus:

Unit- I		Exponential and Gamma Distribution	12L
	1.1	Exponential Distribution: Probability density function (p. d. f.) $f(x) = \begin{cases} \alpha e^{-\alpha x}, & x \ge 0, \alpha > 0 \\ 0, & Otherwise \end{cases}$ Notation: X~ Exp(α) Nature of density curve, interpretation of α as a inter-arrival rate of customer's joining the queue and $\frac{1}{\alpha}$ as mean, mean, median, mode, variance, standard deviation, C.V., M.G.F., C.G.F., moments based on M.G.F., C.G.F., skewness, kurtosis, c.d.f., graph of c.d.f., lack of memory or forgetfulness property, quartiles, deciles, percentiles, mean deviation about mean, Additive property. Distribution of min (X, Y) and max (X, Y) with X, Y i.i.d. exponential random variables.	

	1.2	Gamma Distribution:	
		Probability density function (p. d. f.)	
		$f(x) = rac{lpha^{\lambda}}{\lceil \lambda} e^{-lpha x} x^{\lambda-1}$, $x \ge 0, lpha > 0, \lambda > 0$	
		= 0 , Otherwise	
		Notation: X~ G (α , λ)	
		Nature of density curve, mean, median, mode, variance, standard deviation, C.V., special cases (i) $\alpha = 1$, (ii) $\lambda = 1$, M.G.F., C.G.F., moments based on M.G.F. and C.G.F., cumulants, Measures of skewness and kurtosis based on moments, Additive property. Distribution of sum of n i.i.d. exponential variables. Relation between distribution function of Poisson and gamma variates, Recurrence relation between moments.	
Unit - II		Chi-Square (χ_n^2) Distribution	13L
	2.1	Chi-Square (χ_n^2) Distribution	
	2.2	Concept of Degrees of Freedom. Definition and derivation Chi- Square distribution as a square of Standard Normal Variate (SNV). Definition and derivation of pdf of Chi Square distribution with n degrees of freedom as a sum of squares of i.i.d. SNV (using MGF and Mathematical Induction). R coding to plot density curve of Chi-Square distribution for various degrees of freedom. Mean, mode and variance of Chi-Square distribution. MGF, raw moments using MGF, CGF, central moments using CGF, Coefficients of skewness and kurtosis using moments. For given degrees of freedom R code to obtain quantiles of Chi- Square distribution. Additive property of Chi-Square distributions. Computations of various probabilities using R. Real life applications of Chi-Square distribution, examples and problems. Normal approximation to Chi-Square distribution.	
	2.2	Joint Distribution of \overline{X} and $\frac{hS}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2$ for a random	
		sample from a normal distribution. Independence of X and S^2 using orthogonal transformation.	
Unit III		Student's t-distribution (t _n)	08L
	3.1	Definition and derivation of Student's 't' distribution with 'n' degrees of freedom. R coding to plot density curve of t distribution for various degrees of freedom. R code to compare graphically the density curve of SNV and 't' distribution with various degrees of freedom.	
	3.2	Mean, mode, median and variance of 't' distribution. MGF and CGF of 't' distribution. Raw and central moments and coefficient of Skewness and Kurtosis of 't' distribution. Properties of central moments. Recurrence relation between moments of 't' distribution. Real life applications of 't' distribution, examples and problems.	

Unit-IV		Fishers 'Z' distribution and Snedecore's F- distribution	12L
	4.1	Fishers 'Z' distribution. Definition and derivation of 'Z' distribution. MGF of Fishers 'Z' distribution. Moments of Fishers 'Z' distribution using moments. Mean and variance of Fishers 'Z' distribution. Fishers 'Z' transformation and applications	
	4.2	Snedecore's F- distribution $(F_{n1,n2})$:	
		Definition and derivation of F distribution. R coding to plot density curve of F distribution for various combinations of degrees of freedoms. Mean, mode and variance of F distribution. r th raw moment of F distribution. Quartiles of 'F' Distribution. Proof of Property $P[X a] = 1$. Distribution of reciprocal of random variable with F distribution. Interrelations between Chi-Square, 't' and F distributions. Normal approximation to 'F' distribution. Real life applications of 'F' distribution, examples and problems.	

Suggested Readings:

- 1. Fundamentals of Mathematical Statistics, by Gupta and V.K. Kapoor.
- 2. Continuous Univariate Distributions 1, by Norman L. Johnson and Samuel Kotz

Title of	Title of the Course: Statistical Methods and Demography										
Year: II					Semester: IV						
Course	Course Code	Credit Distribution			Credits	Allotte	Allotted Marks				
Туре		Theory	Practica		ctical d Hours						
							CIE	ESE	Total		
DSC-	BS-ST242T	03	0	0	03	45	30	70	100		
10											

Learning Objectives:

- 1. They can learn about use of statistical tests in real life.
- 2. Students can get in depth knowledge of theoretical background of exact statistical tests.
- 3. They can acknowledge the use of vital statistics in real life.

Course Outcomes (COs):

- a. On completion of this course students will get basic idea about statistical approach to confirm the logical claims or guess.
- b. This course will give an opportunity of applying statistical tests in various fields.
- c. Use of R coding on real life data will improve the programming ability of students.

Detailed Syllabus:

Unit-I		General Concepts of Testing of Hypothesis	6L				
	1.1	Definition of Random sample, Parameter and Statistic, Sampling distribution of a statistic, standard error of a statistic with illustrations (normal, exponential etc), Concept of testing of hypothesis.					
	1.2	Statistical hypothesis, null and alternative hypothesis, simple and composite hypothesis, one sided and two sided alternative hypotheses, critical region, acceptance region, Type-I & Type-II errors, probability of type I error as a level of significance (α), probability of type II error, power of the test, confidence coefficient, p -value. Testing of hypotheses using i) critical region approach, ii) p-value approach and iii) confidence interval approach. One sided and Two sided confidence intervals.					
Unit II		Large Sample Tests for Mean and Proportion9					
	2.1	 Tests for Population Mean(s) i) Ho: μ = μ₀ against H₁ : μ ≠ μ₀, H₁ : μ < μ₀, H₁ : μ > μ₀ (Variance is known) ii) Ho: μ₁ = μ₂ against H₁ : μ₁ ≠ μ₂, H₁ : μ₁ < μ₂, H₁ : μ₁ > μ₂ (Variance is known and equal) iii) Ho: μ₁ = μ₂ against H₁ : μ₁ ≠ μ₂, H₁ : μ₁ < μ₂, H₁ : μ₁ > μ₂ (Variance is known and unequal) iv) Testing of (i), (ii) and (iii) using confidence interval. 					

	2.2	Tests for Population Proportion(s) (large sample / approximate tests)	
		i) Ho: $P = P_0$ against $H_1 : P \neq P_0, H_1 : P < P_0, H_1 : P > P_0$	
		ii) Ho : $P_1 = P_2$ against $H_1 : P_1 \neq P_2$, $H_1 : P_1 < P_2$, $H_1 : P_1 > P_2$	
		iii) Testing of (i) and (ii) using confidence interval	
Unit-III		Small Sample Tests – Based on Chi-Square, t and F distribution	18L
	3.1	Tests based on t – distribution	
		i) Ho: $\mu = \mu_0$ against H ₁ : $\mu \neq \mu_0$, H ₁ : $\mu < \mu_0$, H ₁ : $\mu > \mu_0$ (Variance is	
		known)	
		ii) Ho: $u_1 = u_2$ against $H_1 : u_1 \neq u_2$, $H_1 : u_1 < u_2$, $H_1 : u_1 > u_2$ (Variance	
		is known and equal)	
		iii) Ho: $\mu_1 = \mu_2$ against $H_1: \mu_1 \neq \mu_2, H_1: \mu_1 < \mu_2, H_1: \mu_1 > \mu_2$ (Variance	
		is known and unequal)	
		iv) Testing of (i), (ii) and (iii) using confidence interval.	
		v) Paired t-test for one sided and two sided alternatives	
		vi) Ho: $\rho = 0$ against H ₁ : $\rho \neq 0$	
		Ho: $\beta = 0$ against H ₁ : $\beta \neq 0$, β as a regression coefficient	
	3.2	Tests based on chi-square distribution	
		i) Test for independence of two attributes arranged in 2 X 2	
		Contingency table (with Yate's correction).	
		ii) Test for independence of two attributes arranged in r X s	
		Contingency table, Mc Nemar's test.	
		iii) Test for goodness of fit.	
		iv) Ho : $\sigma^2 = \sigma_0^2$ against one-sided and two-sided alternatives (
		known mean, unknown mean).	
	3.3	Test based on F – distribution	
		Test for Ho: $\sigma_1^2 = \sigma_2^2$ against $H_1 : \sigma_1^2 \neq \sigma_2^2$, $H_1 : \sigma_1^2 > \sigma_2^2$,	
		$H_1: \sigma_1^2 < \sigma_2^2$ when μ known, unknown	
		Illustration of computation of power of the test	
		Use of R for testing the above hypothesis	
	3.4	Tests based on Z transformation	
		i) Ho: $\rho = \rho_0$ against H ₁ : $\rho \neq \rho_0$, H ₁ : $\rho > \rho_0$, H ₁ : $\rho < \rho_0$	
		ii) Ho: $\rho_1 = \rho_2$ against H_1 : $\rho_1 \neq \rho_2$, H_1 : $\rho_1 > \rho_2$, H_1 : $\rho_1 < \rho_2$	
Unit-IV		Demography	12L
	4.1	Vital events, vital statistics, methods of obtaining vital statistics, rates of vital	
		events, demographic ratio: sex ratios, dependency ratio.	
		Death/Mortality rates: Crude death rate, specific (age, sex) death rate,	
		standardized death rate (direct and indirect), infant mortality rate	
	4.2	Fertility/Birth rate: Crude birth rate, general fertility rate, specific (age, sex)	
		fertility rates, total fertility rate.	
	1.2	Growth/Reproduction rates: Gross reproduction rate, net reproduction rate.	
	4.3	Interpretations of different rates, uses and applications. Trends in vital rates	
		as revealed in the latest census.	

Suggested Readings:

- 1. Fundamentals of Mathematical Statistics, Gupta and V.K. Kapoor, Sultan Chand.
- 2. Fundamental of Applied Statistics, Gupta and V.K. Kapoor.

Title of	Title of the Course: Practical IV (Based on BS-ST241T and 242T)									
Year: Il	[Sen	nester: IV							
Course	Course Code	Credit Distr	ribution	Credits	Allotte	Allotted Marks		Iarks		
Туре		Theory	Practical		d Hours					
								1		
						CIE	ES	Total		
							E			
DSC-	BS-ST243P	00	02	02	30	15	35	50		
11										

List of Practical:

Sr.	Title of the Practical	No. of
No.		Practical's
1	Model sampling from chi-square, t and f-distribution	1
2	Calculation various probabilities from chi-square, t and f-distribution	1
3	Large Sample Tests for Mean and Construction of confidence Interval	2
4	Large Sample Tests for Proportion Construction of confidence Interval	1
5	Chi-square test of independence of attributes and Mc Nemar's test	2
6	Chi-square test of goodness of fit and test for population variance	1
7	Test based on t-distribution	1
8	Test based on F-distribution and Z transformation	1
9	Crude death rate, specific (age, sex) death rate, standardized death rate	1
10	Crude birth rate, general fertility rate, specific (age, sex) fertility rates, total	1
	fertility rate	
11	Growth/Reproduction rates: Gross reproduction rate, net reproduction rate	1
	Total	13

Title of	Title of the Course: Computational Tool- IV (Introduction to Python)									
Year: II				Semester: IV						
Course	Course Code	Credit Distribution			Credits	Allotte	Allotted Marks		Iarks	
Туре		Theory	Practical			d Hours				
							CIE	ESE	Total	
VSC-2	BS-ST244P	00	02	2	02	60	15	35	50	

List of Practical:

Sr.	Title of the Practical	No. of
No.		Practical's
1	Introduction and Installation of Anaconda Distribution	1
2	List and Tuple	1
3	Dictionary and Set	1
4	Introduction to Formatted Strings	1
5	Creating and Formatting tables using Python	1
6	Control Structure and Defining Function	1
7	Descriptive Statistics using NumPy Library	2
8	Introduction to Pandas	2
9	Simple bar diagram, Subdivided bar diagram, Multiple bar diagram using	1
	Matplotlib & Seaborn	
10	Histogram, Rod or Spike Plot, density and contour plot using Matplotlib & Seaborn	1
	Total	12