Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce, and Science College Ahmednagar (Autonomous) (Affiliated to Savitribai Phule Pune University, Pune)

National Education Policy (NEP) Choice Based Credit System (CBCS)

Programme Framework B. Sc. - I (Microbiology)

Implemented from

Academic Year 2024-25

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce and Science College, Ahmednagar (Autonomous) Board of Studies in Microbiology

Sr. No.	Name	Designation
1.	Ms. Giramkar Dipali D.	Chairman
2.	Mr.Shaikh Sajid H.	Member
3.	Ms.Pansare Ragini P.	Member
4.	Ms.Shinde Ashwini A.	Member
5.	Ms.Mehetre Vidya S.	Member
6.	Ms. Sarode Dhanashree S.	Member
7.	Ms. Suryavanshu Amruta P.	Member
8.	Dr. Gahile Yogesh R.	Member
9.	Mr.Wani Ashish S.	Member
10.	Dr. Patil Ulhas K.	Member(Co-Opt)
11.	Dr. Dixit Prashant P.	Academic Council Nominee
12.	Dr. Naphade Bhushan S.	Academic Council Nominee
13.	Mr.Choure Rajendra G.	Vice-Chancellor Nominee
14.	Mr. Yewatkar Saikiran	Alumni
15.	Mr. Dube Chandrakant G.	Industry Expert

1. Prologue/ Introduction of the programme:

Microbiology is a broad discipline of Biology which encompasses five groups of microorganisms i.e. bacteria, protozoa, algae, fungi and viruses. It studies the interaction of microorganisms with their environments as well as how these organisms are harnessed in human endeavor and their impact on society. The study has its extensions in various other conventional and advanced fields of biology by employing microbes as study models. Since inception of Microbiology as a branch of Science, it has remained an ever-expanding field of active research, broadly categorized as Pure and Applied Science. Different branches of Pure Microbiology based on taxonomy are Bacteriology, Mycology, Protozoology and Parasitology, Phycology and Virology; with considerable overlap between these specific branches over each other and also with other disciplines of Life Sciences, like Botany, Zoology, Cell Biology, Biochemistry, Biotechnology, Nanotechnology, Bioinformatics, etc. Areas in the applied Microbial Sciences can be identified as: Medical, Pharmaceutical, Industrial (Fermentation, Pollution Control), Air, Water, Food and Dairy, Agriculture (Plant Pathology and Soil Microbiology), Veterinary, Environmental (Ecology, GeoMicrobiology); and the technological aspects of these areas. Knowledge of different aspects of Microbiology has become crucial and indispensable to the society. Study of microbes has become an integral part of education and human progress. The science of Microbiology has an important role to play in health, agriculture, environment and industry. Several discoveries in the last two to three decades, which significantly impact these areas, have put Microbiology on the center stage of teaching, research and development all over the world. There is a continuous demand for microbiologists as work force - education, industry and research. Career opportunities for the graduate students are available in industry and research equally. In the post globalization world higher education has to play a significant role in creation of skilled human resources for the well-being of humanity.

The NEP-2020 offers an opportunity to effect paradigm shift from a teacher-centric to student-centric higher education system in India. It caters skill based education where the graduate attributes are first kept in mind to reverse-design the programs, courses and supplementary activities to attain the graduate attributes and learning attributes. The learning outcomes-based curriculum framework for a degree in B.Sc. (Honours) Microbiology is intended to provide a comprehensive foundation to the subject and to help students develop the ability to successfully continue with further studies and research in the subject while they are equipped with required skills at various stages. Effort has been made to integrate use of

2

recent technology and use of MOOCs to assist teaching-learning process among students. The framework is designed to equip students with valuable cognitive abilities and skills so that they are successful in meeting diverse needs of professional careers in a developing and knowledge-based society. The curriculum framework takes into account the need to maintain globally competitive standards of achievement in terms of knowledge and skills in Microbiology and allied courses, as well develop scientific orientation, spirit of enquiry, problem solving skills, human and professional values which foster rational and critical thinking in the students. This course serves a plethora of opportunities in different fields right from classical to applied aspects in Microbiology. Some of the characteristic attributes a graduate in Microbiology should possess are:

- Disciplinary knowledge and skills Skilled communication
- Critical thinking and problem solving capacity Logical thinking and reasoning
- Team Spirit & Leadership Quality Digital efficiency Ethical awareness / reasoning
- National and international perspective Lifelong learning

2. Programme Outcomes (POs)

Students enrolled in the program will complete a curriculum that exposes and trains students in a full range of essential skills and abilities. Theory supplemented with extensive practical skill sets will help a graduate student to avail the opportunities in the applied fields (research, industry or institutions), without any additional training. They will have the opportunity to master the following objectives.

- 1. To enrich students' knowledge and train them in the pure microbial sciences
- 2. To Acquire knowledge and understanding of the Microbiology concepts as applicable to diverse areas such as medical, industrial, environment, genetics, agriculture, food etc.
- 3. To introduce the concepts of application and research in Microbiology
- 4. To inculcate sense of scientific responsibilities and social and environment awareness
- 5. To help students build-up a progressive and successful career

Level /	_		Subj	ect-1 (S	elected	l as Maj	jor)	Subj	ect-2	Subj	ect-3	(SEC)	GE	OE			VEC CC		
Difficulty	Sem		Т			Р		Т	Р	Р	Т	Р	Т	Р	IKS	AEC	VEC	CC	Total
Certificate	Ι		02			02		02	02	02	02	-	02		02	02	02	02	22
4.5 / 100	II		02			02		02	02	02	02	02	-	02		02	02	02	22
			Cr	edits Ro	elated t	to Majo	r												
		С	ore	Ele	ctive	VSC	FP / OJT/ CEP/RP	Select Min	ted as nor										
		Т	Р	Т	Р	Р	Р	Т	Р		-	Р	Т	Р	-	-	-	-	-
Diploma	Ш	04	02			02	02	02	02		-	02	02		-	02	-	02	22
5.0 / 200	IV	04	02			02	02	02	02		-	02		02		02	-	02	22
Degree	V	06	04	02	02	2	2	02	-	•	-	-			02	-	-	-	22
5.5 /300	VI	06	04	02	02	2	4	02	-		-	-	-		-	-	-	-	22
Total		24	16	04	04	08	10	10	08	04	04	06	0	8	04	08	04	08	132
6.0/400	VII	08	06	02	02	-	RM-04												22
Honours	VIII	08	06	02	02		OJT-04												22
6.0/400 Honours with Research	VII	06	04	02	02		RM-04 RM-04												22
	VIII	06	04	02	02		RM-08												22
Total		40/36	28/24	08	08	08	18/26	10	08	04	04	06	04	04	04	08	04	08	176

B. Sc. Programme Framework: Credit Distribution

B.Sc. Programme Framework: Course Distribution

Level /	_		Subj	ect-1 (S	elected	l as Maj	jor)	Subj	ect-2	Subj	ect-3	(SEC)	GE	'OE					
Difficulty	Sem		Т			Р		Т	Р	Р	Т	Р	Т	Р	IKS	AEC	VEC	CC	lotal
Certificate	Ι		01			01		01	01	01	01	-	01		01	01	01	01	11
4.5 / 100	Π		01			01		01	01	01	01	01	-	01		01	01	01	11
			Cr	edits Re	elated t	to Majo	r												
		С	ore	Ele	ctive	VSC	FP / OJT/ CEP/RP	Select Mi	ed as nor										
		Т	Р	Т	Р	Р	Р	Т	Р		-	Р	Т	Р	-	-	-	-	-
Diploma	Ш	02	01			01	FP-01	01	01		-	01	01		-	01	-	01	11
5.0 / 200	IV	02	01			01	CEP-01	01	01		-	01		01		01	-	01	11
Degree	V	03	02	01	01	01	FP-01	01	-		-	-			01	-	-	-	11
5.5 /300	VI	03	02	01	01	01	OJT-01	01	-		-	-	-		-	-	-	-	10
Total		12	08	02	02	04	04			02	02	03	0	4	02	04	02	04	65
6.0/400	VII	03	03	01	01	-	RM-01												09
Honours	VIII	03	03	01	01		OJT-01												09
6.0/400 Honours	VII	02	02	01	01		RM-01 RM-01												08
with Research	VIII	02	02	01	01		RM-01												07
Total		18/16	14/12	04	04	04	06/07	06	04	02	02	03	0	4	02	04	02	04	83/80

Level /	q		Subject-1								
Difficulty	Sem		Т			Р					
	Ι	0	02 (01)			02 (01))		04(02)		
4.5	II	0	2 (01)			02 (01))		04(02)		
			C	redits	Related	to Major	o Major				
		C	ore	Ele	ective	VSC	FP / OJT/ CEP	IKS			
		Т	Р	Т	Р	Р	Р	Т			
5.0	III	04(02)	02(01)			02(01)	FP-02(01)		10(05)		
	IV	04(02)	02(01)			02(01)	CEP-02(01)		10(05)		
	V	06(03)	04(02)	02(01)	02(01)	02(01)	FP-02(01)	02(01)	20 (10)		
5.5	VI	06(03)	04(02)	02(01)	02(01)	02(01)	OJT-04(01)		20(09)		
Total		12	08	(02)	(02)	04	04	(01)	33		
6.0	VII	03	03	(01)	(01)	-	RM-04(01)		22(09)		
	VIII	03	03	(01)	(01)		OJT-04(01)		22(09)		
6.0	VII	(02)	(02)	(01)	(01)		RM-04(01) RP-04(01)		22(08)		
	VIII	(02)	(02)	(01)	(01)		RM-08(01)		22(07)		
		18/16	14/12	04	04	04	06/07	(01)	51/48		

B. Sc. -Microbiology: Credit and Course Distribution in Brackets

Programme Framework (Courses and Credits): B. Sc. Microbiology

Sr. No.	Year	Semester	Level	Course Type	Course Code	Title	Credits
1.	Ι	Ι	4.5	DSC-01	BS-MR 111T(A)	Introduction To Microbiology	02
2.	Ι	Ι	4.5	DSC-01	BS-MR 111T(B)	Introduction To Microbiology World	02
3.	Ι	Ι	4.5	DSC-02	BS-MR 112P(A)	Microbiology Practical Course I	02
4.	Ι	Ι	4.5	DSC-02	BS-MR 112P(B)	Practicals Based on Basic Microbiology	02
5.	Ι	II	4.5	DSC-03	BS-MR 121T(A)	Microbial Growth And Control	02
6.	Ι	II	4.5	DSC-03	BS-MR 121T(B)	Industrial Microbiology	02
7.	Ι	II	4.5	DSC-04	BS-MR 122P(A)	Microbiology Practical Course II	02

8.	Ι	II	4.5	DSC-04	BS-MR	Practicals based on	02
					122P(B)	Industrial Microbiology	
9.	II	III	5.0	DSC-05	BS-MR 231T	Medical Microbiolgy And	02
						Immunology	
10.	II	III	5.0	DSC-06	BS-MR 231T	Bacterial Physiology And	02
						Metabolism	
11.	II	III	5.0	DSC-07	BS-MR 231P	Practical Course Based On	02
						Theory Paper I And II	
12.	II	III	5.0	VSC-01	BS-MR 234P	Labrotory Practices In	02
						Microbiolgy	
13.	II	III	5.0	FP-01	BS-MR 235T	Field Project	02
14.	II	IV	5.0	DSC-08	BS-MR 241T	Bacterial Genetics	02
15.	II	IV	5.0	DSC-09	BS-MR 242T	Air ,Water And Soil	02
						Microbiology	
16.	II	IV	5.0	DSC-10	BS-MR 243P	Practical Course Based On	02
						Theory Paper I And II	
17.	II	IV	5.0	VSC-02	BS-MR 243P	Indurtrial Microbiology	02
18.	II	IV	5.0	CEP-01	BS-MR 245P	Community Engagement	02
10						Project	
<u>19.</u>	III	V	5.5	DSC-11	BS-MR 351T	Medical Microbiolgy	02
20.	III	V	5.5	DSC-12	BS-MR 352T	Molecular Biology I	02
21.	III	V	5.5	DSC-13	BS-MR 353T	Enzymology	02
22.	III	V	5.5	DSC-14	BS-MR 354P	Microbiology Practical	02
	TT	X.Z	~ ~	D00 15	DC MD 255D		00
23.	111	V	5.5	DSC-15	BS-MR 355P	Microbiology Practical	02
24	TTT	V	55		DC MD 256T	Course II	02
24.		V	5.5	DSE-01	DS-MR 3301	Practical Course Page On	02
23.	111	v	5.5	DSE-02	DS-WIK SS/F	Applied Microbiology	02
26	Ш	V	55	VSC 03	BS MD 358D	Nanobiotechnology	02
20.	III	V	5.5	FP_02	BS-MR 350P	Filed Project	02
27.	III	V	5.5	IKS-02	BS-MR 360T	Vedic Microbiology	02
20.	III	VI	5.5	DSC-16	BS-MR 361T	Immunology	02
30.	III	VI	5.5	DSC-17	BS-MR 362T	Fermentation Technology	02
31.	III	VI	5.5	DSC-18	BS-MR 363T	Molecular Biology II	02
32.	III	VI	5.5	DSC-19	BS-MR 364P	Microbiology Practical	02
		. –				Course I	
33.	III	VI	5.5	DSC-20	BS-MR 365P	Microbiology Practical	02
						Course II	
34.	III	VI	5.5	DSE-03	BS-MR 366T	Food And Dairy	02
						Microbiology	
35.	III	VI	5.5	DSE-04	BS-MR 367P	Practical Course Based On	02
						Food And Dairy	
						Microbiology	
36.	III	VI	5.5	VSC-04	BS-MR 368P	Cilincal Pathology And	02
						Biochemistry	
37.	III	VI	5.5	OJT-01	BS-MR 369T	On Job Training	04

B. Sc. Microbiology (Honours)

38.	IV	VII	6.0	DSC-21	BS-MR 471T	Microbial Cell	03
						Organization	
						And Biochemistry	
39.	IV	VII	6.0	DSC-22	BS-MR 472T	Quantitative Biology	03
40.	IV	VII	6.0	DSC-23	BS-MR 473T	Microbial Systematics	02
41.	IV	VII	6.0	DSC-24	BS-MR 474P	Practical Course Based	02
						On Biochemical	
						Techniques	
42.	IV	VII	6.0	DSC-25	BS-MR 475P	Practical Course Based	02
						On Biostatistics And	
						Bioinformatics	
43.	IV	VII	6.0	DSC-26	BS-MR 476TP	Practical Course Based On	02
						Developmental Biology	
						And	
						Microbial Diversity	
44.	IV	VII	6.0	DSE-05	BS-MR 477T	Virology	02
45.	IV	VII	6.0	DSE-06	BS-MR 4781	Practical Course	02
1.5	TT 7					Based On Virology	
46.	IV	VII	6.0	RM-01	BS-MR 4791	Research	04
47	TX 7	X/III	6.0			Methodology	02
47.	IV	VIII	6.0	DSC-27	BS-MR 4811	Instrumentation And	03
				599.00		Molecular Biophysics	
48.	IV	VIII	6.0	DSC-28	BS-MR 482T	Molecular Biology	03
49.	IV	VIII	6.0	DSC-29	BS-MR 483T	Nitrogen Metabolism	02
						And Photosynthesis	
50.	IV	VIII	6.0	DSC-30	BS-MR 484T	Practical Course Based On	02
						Instrumentation	
<u> </u>	TT 7		6.0	D00.01		Techniques	00
51.	IV	VIII	6.0	DSC-31	BS-MR 4851	Practical Course Based On	02
50	TX 7	X /TTT	6.0				02
52.	IV	VIII	6.0	DSC-32	BS-MR 4861	Practical Course Based	02
						On Nitrogen	
						Metabolism And	
52	TV/	VIII	60	DEE 07	DC MD 407T	Engumology And	02
55.	1 V	V III	0.0	DSE-01	DO-IVIK 48/1	Enzymology And Bioenergetics	02
54	IV	VIII	6.0	DSE-08	BS-MR /188T	Practical Course	02
5	ТŸ	· · · · · ·	0.0		DO MIX TOOI	Based On Enzymology	
55.	IV	VIII	6.0	OJT-02	BS-MR 489T	On Job Training	04

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce and Science College, Ahmednagar (Autonomous) Syllabus B. Sc. –I Microbiology

Title of the Course:Introduction to Microbiology											
Year: I Semester: I											
Course	Course Code	Credit Di	Credits	Allotted	Alle	otted M	Iarks				
Туре		Theory	Practical		Hours						
						CIE	ESE	Total			
DSC-01	BS-MR	02	00	02	30	15	35	50			
	111T(A)										

Learning Objectives: The objective of this course is 1.to introduce the students to the subject of Microbiology, different braches of Microbiology 2.to make aware the students about history and development of Microbiology as well as bacterial cytology and Tecnique.

Course Outcomes (Cos)

- 1. Students will learn classification system and different types of microorganism
- 2. Students will learn the historical developments in Microbiology from the discovery of microbes to the role of microbes in various fields
- 3. Students will learn the Principle, working and application of bright field microscopy, phase contrast microscopy, fluorescence microscopy, electron microscopy.
- 4. Students will learn the staining techniques like monochrome staining, negative staining, differential staining and special staining.
- 5. Students will be learn bacterial cytology Structure, chemical composition and functions of the components in bacterial cell.

Detailed Syllabus:

Unit No	Торіс	No. of Hours
Unit I	Introduction to Microbiology	05
	Beneficial and Harmful effects of microorganisms	
	Scope and application of Microbiology	
	• Medical Microbiology, Environmental Microbiology	
	,Food and Dairy Microbiology,Agricultural	
	Microbiology, Industrial Microbiology, Immunology	
	• Morphological and differentiating characters of	

	microorganisms	
	1. Bacteria (Eubacteria, Archaea, Actinomycetes)	
	2. Rickettsia	
	3. Protozoa	
	4. Fungi	
	5. Algae	
	6. Viruses, Viroids and Prions	
	• Classification systems-Three domain classification and	
	Five kingdom system of classification	
	• Introduction to Bergey's Manual of Determinative and	
	Systemic Bacteriology	
Unit II	Development of Microbiology as a discipline	08
	• Discovery of Microscope and Microorganisms (Anton	
	von Leeuwenhoek and Robert Hooke),	
	Abiogenesis v/s biogenesis	
	Golden Era of Microbiology	
	Contributions of –	
	• Louis Pasteur (Fermentation, Rabies, Pasteurization	
	and Cholera vaccine-fowl cholera experiment)	
	• Robert Koch (Koch's Postulates, Germ theory of	
	disease, Discovery of viruses (TMV and Bacteriophages),	
	River's Postulates	
	• Contribution of Joseph Lister (antiseptic surgery), Paul	
	Ehrlich (Chemotherapy), Edward Jenner (Vaccination)	
	and Alexander Fleming (Penicillin)	
Unit III	Bacterial Cytology	07
	• Microbial cell size, shape and arrangements	
	Structure, chemical composition and functions of	
	the following components in bacterial cell:	
	• Cell wall (Gram positive, Gram negative)	
	Cell membrane	
	• Endospore (spore formation and stages of sporulation)	
	• Capsule	
	• Flagella	
	• Fimbriae and Pili	
	Ribosomes	
	Chromosomal & extra-chromosomal material	
	Cell inclusions	
Unit IV	Microscopy and Staining method	10
	A Mianagapy: Dringinla working and application of	
	A. Microscopy. Finciple, working and application of	
	different types of Microscopes:	
1		

Bright Field Microscope, Dark Field Microscope, Phase Contrast Microscope,Fluoresence Microscope, Scanning and Transmission Electron Microscope.B. Staining Methods:	
a. Definition and types of stains(acidic and basic stains)	
b. Role of Mordant, fixatives , accentuaters and decolourizers	
c. Simple (Monochrome) staining and negative staining,	
d. Differential staining- Gram staining, and acid-fast staining.	
e. Special staining-Endospore staining, capsule staining, cell wall.	

- 1. Daniel L., (1998). Microbiology, 2nd Edition, McGraw-Hill Publication.
- Ingraham J. L. and Ingraham C.A. (2004). Introduction to Microbiology, 3rd Edition, Thomson Brooks/Cole.
- Madigan M.T., Martinko J.M. (2006). Brock's Biology of Microorganisms. 11th Edition. Pearson Education Inc.
- Pelczar M.J., Chan JR. E.C.S., Noel R. K. (1993). Microbiology, 5th Edition, Tata McGraw Hill Press.
- Prescott L.M., Harley J.P., and Klein D.A. (2005). Microbiology, 6th Edition. McGraw Hill Companies Inc.
- Prescott, Lancing. M., John, P. Harley and Donald, A. Klein (2006). Microbiology, 6th Edition, McGraw Hill Higher Education.
- J. M., Sherwood L. M. and Woolverton C. J. (2013). Prescott's Microbiology, 8th Edition, McGraw-Hill Higher Education.
- Salle A.J. (1971). Fundamental Principles of Bacteriology. 7th Edition, Tata McGraw Hill Publishing Co.
- 9. Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987). General Microbiology, 5th Edition, Macmillan Press Ltd.
- 10. Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction. 8th Edition, Pearson Education Inc.

Title of th	Title of the Course: Introduction to Microbiology World											
Year: I Semester: I												
Course	Course Code	Credit Di	stribution	Credits	Allotted	All	otted M	Iarks				
Туре		Theory	Practical		Hours							
						CIE	ESE	Total				
DSC-01	BS-MR	02	00	02	30	15	35	50				
	111T(B)											

Learning Objectives:

- 1. To gain knowledge about classification and characteristics of microorganisms.
- 2. To compare the anatomy and physiology of prokaryotic and eukaryotic cells.
- 3. To define the nutrition and types of microorganisms.
- 4. To explain the growth and reproduction of microbial populations.
- 5. To study microscopy and staining technique

Course Outcomes (Cos)

- a. Understand the history of Microbiology
- b. Study the contributions of phenomenal scientists in the field of Microbiology
- c. Study the branches of Microbiology
- d. Learn classification of microorganisms and bacterial cell structure analysis.

Unit No.	Topics	No. of			
		Hours			
Unit -1.	Introduction, History, Branches and Scope of Microbiology:	05			
	Introduction to Microbiology and different concepts in Microbiology				
	Pre golden era, Golden era and post golden era of Microbiology				
	Contributions of scientists in the field of Microbiology				
	Basic, applied branches of Microbiology and scope of Microbiology in				
	various field				
Unit -2.	Types of cells, Classification of microorganisms and types of bacteria:	06			
	Prokaryotic and eukaryotic cells				
	Classification of microorganisms- Bacteria, fungi, protozoa, algae				
	Viruses, Viroid, Prions.				
	Classification and types of bacteria- Archaebacteria, Eubacteria				
	Industrially important fungi- Molds and yeasts				
Unit -3.	Microbial Physiology and Microbial Growth:	09			
	Ultra structure of bacteria –Chromosomal and extrachromosomal DNA,				
	ribosome, cell wall, cell membrane, capsule, endospore, flagella,				
	Fimbriae, Pili				
	Cell inclusions- Gas vesicles, carboxysomes, PHB granules,				
	metachromatic granules, glycogen bodies, starch granules,				
	magnetosomes, sulfur granules, chlorosomes etc.				
	Growth curve, introduction to kinetics of growth, generation time, growth				
	rate.				
	Reproduction in microorganisms: sexual reproduction and asexual				

	reproduction.					
Unit -4.	Isolation, Characterization, Microscopy and Staining Techniques:	10				
	Isolation techniques- Serial dilutions, spread plate, pour plate and streak					
	plate, colony and biochemical characterization					
	Methods of enumeration: Microscopic methods (Direct microscopic					
	count), Plate counts (Total viable count), Turbidometric methods.					
	Overview of types of microscopy					
	Principles and working of Microscopy-					
	a) Bright field microscope and					
	b) Dark field microscope					
	Definitions of Stain; Types of stains					
	Properties and role of Fixatives, Mordants, Decolourisers and					
	Accentuators.					
	Simple staining, differential staining and special staining					

1. Brock Biology of Microorganisms (14th Edition) 14th Edition by Michael T. Madigan,

John M. Martinko, Kelly S. Bender, Daniel H. Buckley, David A. Stahl, Thomas Brock

2. Stanier, Y., Doudoroff, M., & Adelberg, E. A. (1958). General Microbiology. General Microbiology.

3. Prescott's Microbiology 10th Edition. By Joanne Willey and Linda Sherwood and

Christopher J. Woolverton

- 4. Black, J. G. (2017). Microbiology: principles and explorations. John Wiley & amp; Sons.
- 5. Talaro, K. P., & amp; Chess, B. (2018). Foundations in Microbiology. McGraw-Hill.

6. Foster, J. W., & amp; Slonczewski, J. L. (2017). Microbiology: an evolving science. WW NORTON.

7. Microbiology. by Michael J. Pelczar Jr., Roger D. Reid, et al.

8. Microbiology: An Introduction, Global Edition. Edited by Gerard J. Tortora

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce and Science College, Ahmednagar (Autonomous) Syllabus B. Sc. -I (Microbiology)

Title of the Course: Microbiology Practical Course I									
Year: I			S	eme	ester: I				
Course	Course Code	Credit Dist	ribution		Credits	Allotted	Alle	otted M	Iarks
Type		Theory	Practica	.1		Hours			
							CIE	ESE	Total
DSC-02	BS-MR	00	02		02	60	15	35	50
	112P(A)								

Learning Objectives: The objective of this course is 1.to make students familiar with basic working of Microbiology Laboratory and 2. To learn basic techniques such as Handling of instruments, glasswares, as eptic handling etc. 3. to learn staining techniques.

Course Outcomes (Cos):

- 1. Students will learn the Good Laboratory Practices for common Microbiology Laboratory instruments
- **2.** Students will learn construction, working and observation of microorganisms using compound microscope.
- 3. Students will learn different techniques of staining and motility of microorganisms.
- **4.** Students will understand basic techniques in the laboratory such as handling, wrapping, plugging of laboratory glasswares etc.
- 5. Students will understand aseptic transfer techniques

Detailed Syllabus:

Sr.No.	Title of the Experiment	No. of Practical
1.	Safety measures and Good Laboratory Practices in Microbiology laboratory	1

2.	Introduction, working principle,operation, precautions and use of common Microbiology laboratory instruments: Analytical balance ,Incubator, Hot air oven, Autoclave, Colorimeter/ spectrophotometer , Laminar air flow hood/biosafety cabinet ,centrifuge, Distillation unit , pH meter	2
3.	Construction (mechanical and optical), working and care of compound microscope.	1
4.	Wet mount slide preparation and its observation for: Bacteria, Algae, Fungi and Protozoa.	1
5.	Permanent slide observation: Algae, Fungi and Protozoa	1
6.	Introduction and use of common laboratory wares: Test tubes, culture tubes, suspension tubes, screw capped tubes, Petri plates, pipettes (Mohr and serological) micropipettes, Pasteur pipettes, Erlenmeyer flask, volumetric flask, glass spreader, Durham's tube, Cragie's tube and inoculating needles (wire loop, stab needles),dessicator,anaerobic jar	1
7.	Learning basic techniques in Microbiology: Wrapping of glassware, cotton plugging, cleaning and washing of glassware, biological waste disposal.	1
8.	Aseptic transfer technique (Aseptic Behavior in the clean room or in the LAF (while working)	1
9.	Basic staining techniques: i. Monochrome staining ii. Negative staining	2
10.	Differential staining :Gram staining of bacteria	1
11.	Observation of motility in bacteria using: Hanging drop method and swarming growth method.	2

- Laboratory Exercises in Microbiology(2002), 5th Edition, Harley–Prescott, The McGraw–Hill Companies,
- A Handbook of Practical Microbiology(2013), R. Saravanan D. Dhachinamoorthi CH. MM. Prasada Rao LAP LAMBERT Academic Publishing
- 3. Practical Handbook of Microbiology (2015)3rd Edition, by Emanuel Goldman and Lorrence H Green, (Editor), CRC Press

Title of the Course: Practicals Based on Basic Microbiology									
Year: I			Sen	nester: I					
Course	Course Code	Credit Dist	ribution	Credits	Allotted	All	otted M	Iarks	
Туре		Theory	Practical		Hours				
						CIE	ESE	Total	
DSC-02	BS-MR	00	02	02	60	15	35	50	
	112P(B)								

Learning Objectives:

1. To study glassware's used in Microbiology laboratory and its cleaning.

2. To study preparation of nutrient medium for isolation of microorganisms.

3. Isolation of microorganism by streak plate method, pour plate, spread plate method and

Staining.

4. To study isolation, enumeration and staining techniques.

Course Outcomes (Cos)

1. Student will study good laboratory practices

2. Students will learn the isolation techniques

3. Students will learn the bacteria, algae and fungi isolation technique and its morphological study

Sr. No	Experiment Title	No. of Practicals
1.	Safety Measures and Good Laboratory Practices in Microbiology laboratory	1
2.	Preparation of Winogradsky column to study diverse bacterial communities	1
3.	Study of microscope and cell morphology by micrometry	1
4.	Hanging drop preparation for observation of motility	1
5.	Preparation of bacterial culture medium and aseptic transfer technique	1
6.	Isolation and enumeration of microorganisms by spread plate method	1
7.	Isolation and enumeration of microorganisms by pour plate method	1
8.	Isolation and characterisation of microorganisms by streak plate method	1
9.	Study of simple staining technique by monochrome staining	1
10.	Study of differential staining technique by Gram's Staining	1
11.	Study of special staining technique by endospore staining	1
12.	Biochemical characterisation of bacteria (catalase and oxidase test)	1

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce and Science College, Ahmednagar (Autonomous) Syllabus B. Sc. -I (Microbiology)

Title of the Course: Microbial Growth and Control								
Year: I	ar: I Semester: II							
Course	Course Code	Credit Dist	ribution	Credits	Allotted	Alle	otted M	Iarks
Туре		Theory	Practical		Hours			
						CIE	ESE	Total
DSC-03	BS-	02	00	02	30	15	35	50
	MR121T(A)							

Learning Objectives: The objective of this course is 1. To make students aware about the nutritional classification of microorganisms and the types of culture media employed to isolate the microorganisms 2. To learn the method for isolation and maintenance of pure cultures and 3. to learn the different methods of sterilization and disinfe

Course Outcomes (Cos)

- 1. Students will understand the nutritional requirement of a microbial cell and nutritional classification of microorganisms.
- 2. Students will learn the design and preparation of different types of culture media.
- 3. Students will learn the isolation and preservation technique and study different methods of enumeration of bacterial growth and about bacterial growth in response to environment factors.
- 4. Students will study different methods for microbial control such as sterilization, disinfection and their mode of action and their efficiency.

Detailed Syllabus:

Unit No.	Торіс	No. of
Unit I	A. Microbial Cultivation and Growth	110015
	1. Nutritional requirements in bacteria and nutritional classification of microorganisms.	
	2. Culture media: components of media, Types of media	
	3. Pure culture techniques:	
	Streak plate, spread plate and pour plate methods cultivation, maintenance and preservation of pure cultures.	
	4. Asexual methods of reproduction, Bacterial growth curve, calculation of generation time and specific growth rate.	
	. B. Measurement of bacterial growth- Methods of enumeration:	
	 Microscopic methods (Direct microscopic count, counting cells using improved Neubauer chamber, Petroff-Hausser counting chamber) Plate counts (Total viable count) Turbidometric methods (including Nephelometry) Estimation of biomass (Dry mass, Packed cell volume) 	
	• Bacterial growth in response to environment(pH,Temperature,Salt and solute concentration ,heavy metals)	
Unit II	 Control of Microbial Growth Sterilization Mode of action and applications of- Physical Agents - Heat, Radiation, Filtration Chemical agents –ethylene oxide ,formaldehyde Checking of efficiency of sterilization (Dry and Moist) – Biological and Chemical Indicators 2. Disinfection: Characteristics of an ideal disinfectant Mode of action and applications of- Chemical agents Aldehydes, Halogens, Quaternary ammonium compounds, Phenol and phenolic compounds, Heavy metals, Alcohol, Dyes, Detergents and Ethylene oxide. Checking of efficiency of disinfectant - Phenol Coefficient (Rideal– Walker method) 	15

- 1. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata McGraw Hill Press.
- Prescott, Lancing. M., John, P. Harley and Donald, A. Klein (2006), Microbiology, 6th Edition, McGraw Hill Higher Education
- Willey J. M., Sherwood L. M. and Woolverton C. J. (2013) Prescott's Microbiology, 8th Edition, McGraw-Hill Higher Education
- Salle A.J. (1971) Fundamental Principles of Bacteriology. 7th Edition. Tata McGraw Hill Publishing Co.
- Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology, 5th Edition.Macmillan Press Ltd.
- Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction. 8th Edition. Pearson Education Inc

Title of the Course: Industrial Microbiology								
Year: I			Ser	nester: II				
Course	Course Code	Credit Dist	ribution	Credits	Allotted	Alle	otted M	Iarks
Type		Theory	Practical		Hours			
						CIE	ESE	Total
DSC-03	BS-	02	00	02	30	15	35	50
	MR121T(B)							

Learning Objectives:

- 1. To gain knowledge about Different concept in industrial Microbiology.
- 2. To study the types of fermentation.
- 3. To define the nutrition and types of microorganisms.
- 4. To explain the conventional method of optimization.
- 5. To study sterilization technique.

Course Outcomes (Cos)

- a. Learn isolation of industrially important microorganism.
- b. Understand the strain improvement and preservation.
- c. Understand process of the inoculum preparation.
- d. Learn different products produced by bacteria and yeast

Detailed syllabus

Unit No.	Topics	No. of
		Hours
Unit-1.	Introduction to Industrial Microbiology and Fermentation:	05
	Definition of Industrial Microbiology	
	Different concept in industrial Microbiology	
	Historical development in fermentation industry	
	Contribution of scientist in industrial Microbiology	
	Scope of Industrial Microbiology	
	Concept of fermentation	
	Types of fermentation- Batch, fed- batch and continuous	
	Design of typical fermenter, parts of fermenter with their function	
	Overview of types of fermenter with examples.	
Unit- 2.	Fermentation Media:	07
	Concept of media and types of media	
	Role of nutrients in microbial growth	
	Components of typical fermentation medium- Macro elements and	
	microelements	
	Crude sources of carbon and nitrogen in fermentation medium	
	Water, buffer, precursor, inducer, inhibitor and antifoam agents	
	Concept of optimization	
	Conventional method of optimization	
	Overview of statistical method of medium optimization	
Unit- 3.	Sterilization technique:	06
	Concept of asepsis, disinfection & sterilization	
	Sterilization by heat – Dry & moist heat	
	Pasteurization methods and its types	
	Sterilization by radiation- U.V. light & γ radiation	
	Filtration: Bacteriological filters, types and uses	
	Chemical method of sterilization- Liquid and gases	
	Disinfectant types, action & applications	
Unit -4.	Isolation of industrially important microorganism, Strain	06
	improvement and preservation:	
	Primary metabolites and secondary metabolites by microorganisms	
	Concept of primary and secondary screening	
	Strain improvement by mutation	
	Stock cultures preservation and its maintenance	
	Culture collection centres	
Unit -5.	Upstream & downstream processing:	06
	Concepts of upstream processes	
	Inoculum preparation	
	Concept of chemostat and turbidostat	
	Fermentation process	
	Basics of fermentation kinetics	
	Concept of downstream processing	
	Overview of downstreaming techniques	
	Overview of different product produced by bacteria and yeast	

- 1. Microbiology. by Michael J. Pelczar Jr., Roger D. Reid, et al.
- 2. Microbiology: An Introduction, Global Edition. Edited by Gerard J. Tortora
- Brock Biology of Microorganisms (14th Edition) 14th Edition by Michael T. Madigan, John M. Martinko, Kelly S. Bender, Daniel H. Buckley, David A. Stahl, Thomas Brock
- 4. Stanier, Y., Doudoroff, M., & Adelberg, E. A. (1958). General microbiology. General microbiology.
- 5. Prescott's Microbiology 10th Edition. By Joanne Willey and Linda Sherwood and Christopher J. Woolverton
- 6. Black, J. G. (2017). Microbiology: principles and explorations. John Wiley & Sons.
- 7. Talaro, K. P., & Chess, B. (2018). Foundations in microbiology. McGraw-Hill.
- 8. Foster, J. W., & Slonczewski, J. L. (2017). Microbiology: an evolving science. WW NORTON.
- 9. Patel, A.H. (2008). Industrial Microbiology. MaCmillan Publication, New Delhi.
- 10. Stanbury, Peter & amp; Whitaker, A. (2008). Principal of Fermentation Technology. Butterworth Heinemann.
- 11. Casida L.E. (2005). Industrial Microbiology. New age International Publishers.
- 12. Srivastava, M.L. Fermentation Technology.
- 13. Singh, B.D. (2008). Biotechnology. New age International.

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce and Science College, Ahmednagar (Autonomous) Syllabus B. Sc. -I (Microbiology)

Title of the Course: : Microbiology Practical Course II								
Year: I	Semester: II							
Course	Course Code	Credit Distribution		Credits	Allotted	Allotted Marks		
Туре		Theory	Practical		Hours			
						CIE	ESE	Total
DSC-04	BS-MR 122	00	02	02	60	15	35	50
	P(A)							

Learning Objectives: The objective of this course is 1.to develop the Microbiology skills in students like preparation and sterilization of media,2. To learn methods for isolation and cultivation and preservation of microorganisms.

Course Outcomes (Cos):

- 1. Students will be able to prepare and sterilize culture media and to check sterilization efficiency of autoclave.
- 2. Students will be able to perform isolation and enumeration of bacteria by streak, spread, pour plate techniques, observation of colony and cultural characteristics. and enumeration using Direct Microscopic count
- 3. Students will understand the different methods of culture preservation.
- 4. Student will be able to determine the effect of different parameters on microbial growth

Detailed Syllabus:

Sr. No.	Title of the Experiment	No. of	
		practical	
1	Preparation and sterilization of different Microbiological culture	1	
	media (Nutrient agar/broth, MacConkey's agar).	1	
2	Checking sterilization efficiency of autoclave	1	
3	Special staining techniques:	2	
	i. Endospore staining	2	

	ii. Capsule staining		
4	Isolation of bacteria by streak plate technique (observation of	1	
	Colony and cultural characteristics)	1	
5	Enumeration of microorganism from fermented food / soil / water		
	by:		
	i. Spread plate method	2	
	ii. Pour plate method		
6	Direct microscopic count: Yeast cell enumeration using Improved	1	
	Neubauer Chamber	1	
7	Study of the effect of different parameters on growth of bacteria	3	
	(pH, temperature, sodium chloride concentration, heavy metals)	5	
8	To study enrichment technique with Winogradsky's column.	1	
9	Preservation of cultures on slants, soil and on grain surfaces;	1	
	revival of these cultures and lyophilized cultures.	1	
10	Study of effect of washing on skin microflora	1	
	(soap and disinfectant)		

- Laboratory Exercises in Microbiology (2002),5th Edition, Harley–Prescott, The McGraw–Hill companies.
- A Handbook of Practical Microbiology (2013), R. Saravanan D. Dhachinamoorthi CH. MM. Prasada Rao LAP LAMBERT Academic Publishing.
- 3. Practical Handbook of Microbiology (2015) 3rd Edition, by Emanuel Goldman and Lorrence H Green, (Editor) CRC Press.

Title of the Course: : Practicals based on Industrial Microbiology								
Year: I	Semester: II							
Course	Course Code	Credit Distribution		Credits	Allotted	Allotted Marks		
Туре		Theory	Practical		Hours			
						CIE	ESE	Total
DSC-04	BS-MR 122	00	02	02	60	15	35	50
	P(B)							

Learning Objectives:

- 1. To study working of laboratory bench top fermenter and CIP.
- 2. To study preparation of nutrient medium and sterility testing of medium.
- 3. To study Effect of nutrient concentration on microbial growth.
- 4. To study process of fermentation.

Course Outcomes (Cos)

- 1. Student will study CIPs.
- 2. Students will learn the screening techniques.
- 3. Students will learn the bacterial growth curve.
- 4. Students will study fermentation by Visiting to fermentation industry.

Sr. No	Experiment Title			
		Practicals		
1.	Study of parts and working of laboratory bench top fermenter and	1		
	CIP			
2.	Preparation of enriched/ enrichment/ differential/ selective/ minimal	1		
	medium and sterility testing of medium			
3.	Demonstration of fermentation by yeast/ bacteria	1		
4.	Effect of salts concentration on microbial growth	1		
5.	Effect of Temperature on Microbial Growth	1		
6.	Effect of sugar concentration on microbial growth	1		
7.	Effect of pH on Microbial Growth.	1		
8.	Study of bacterial growth curve	1		
9.	Primary screening for primary metabolite producer	1		
10.	Secondary screening for primary metabolite producer	1		
11.	Preparation of medium slant and preservation of isolate	1		
12.	Visit to fermentation industry and report writing with photo	1		
	documentation			