Ahmednagar Jilha Maratha Vidya Prasarak Samaj's
New Arts, Commerce, and Science College Ahmednagar (Autonomous) (Affiliated to Savitribai Phule Pune University, Pune)

National Education Policy (NEP) Choice Based Credit System (CBCS)

Programme Framework
B. Sc. - I (Mathematics)

Implemented from
Academic Year 2024-25

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's
New Arts, Commerce and Science College, Ahmednagar
(Autonomous)
Board of Studies in Mathematics

Sr. No.	Name	Designation
1.	Dr. S. B. Gaikwad	Chairman
2.	Dr. S. V. Ingale	Member
3.	Mr. S. A. Tarate	Member
4.	Mr. K. A. Kshirsagar	Member
5.	Ms. B. N. Todkari	Member
6.	Ms. D. G. Gade	Member
7.	Mr. A. S. Jadhav	Member
8.	Ms. P. D. Kasule	Member
9.	Ms. P. S. Ansari	Member
10.	Mr. T. A. Bhakare	Member
11.	Mr. H. N. Shaikh	Member
12.	Dr. A. A. Kulkarni	Member
13.	Prof. (Dr). A. V. Mancharkar	Member
14.	Dr. N. S. Darkunde	Academic Council Nominee
15.	Dr. S. B. Bhalekar	Academic Council Nominee
16.	Dr. G. S. Kadu	Vice-Chancellor Nominee
17.	Mr. P. L. Pawar	Alumni
18.	Mr. Shirish Padalkar	Industry Expert

1. Prologue/ Introduction of the programme:

Welcome to the B.Sc. Mathematics Honours and Honours by Research program! This program is designed for students who have a passion for mathematics and wish to pursue an in-depth study of this fascinating field. Through this prologue, let's explore the essence and significance of this program. The B.Sc. Mathematics Honours program offers a comprehensive curriculum that combines core mathematical principles with advanced topics, enabling students to develop a strong foundation in mathematics. This program is specifically tailored for students who are seeking a rigorous academic experience and aspire to pursue higher studies or research in mathematics. The Honours by Research component provides students with an opportunity to delve deeper into a specific area of mathematics under the guidance of experienced faculty members. This research-oriented approach allows students to explore their interests, develop critical thinking skills, and make original contributions to the field of mathematics. It serves as a stepping stone for those considering a career in academia or research.

During the course of the program, students will be exposed to a wide range of mathematical topics, including calculus, algebra, geometry, number theory, mathematical analysis, probability theory, and more. They will acquire both theoretical knowledge and practical problem-solving skills, enabling them to tackle complex mathematical problems and develop analytical thinking abilities. The program emphasizes the development of mathematical reasoning, logical thinking, and the ability to communicate mathematical ideas effectively. Students will engage in rigorous mathematical proofs, problem-solving exercises, and mathematical modeling, fostering their ability to analyze and interpret real-world phenomena using mathematical principles. Through hands-on projects, seminars, and collaborative research opportunities, students will also develop essential skills such as data analysis, computer programming, and numerical methods, which are increasingly important in today's data-driven world. The B.Sc. Mathematics Honours and Honours by Research program aims to cultivate a deep appreciation for the elegance and beauty of mathematics while nurturing the intellectual curiosity and creativity of students. It provides a supportive learning environment where students can interact with faculty members, participate in academic discussions, and engage in a vibrant mathematical community. Upon successful completion of the program, students will be equipped with a solid foundation in mathematics, critical thinking skills, and research experience. Graduates will have a wide range of career options, including pursuing advanced degrees in mathematics or related disciplines, teaching mathematics at the secondary or tertiary level, working in research institutions, or applying their mathematical skills in industries such as finance, technology, data science, and more. We invite you to embark on this exciting journey of discovery and exploration in the field of mathematics. Through the
B.Sc. Mathematics Honours and Honours by Research program, you will develop a profound understanding of mathematics, acquire invaluable skills, and contribute to the advancement of this timeless discipline. Get ready to unlock the wonders of mathematics and make your mark in the world of numbers!

2. Programme Outcomes (POs):

1. Graduates will have a solid foundation in fundamental mathematical concepts, theories, and techniques across various branches of mathematics, including calculus, algebra, geometry, analysis, and discrete mathematics.
2. Students will acquire advanced knowledge in specialized areas of mathematics through coursework, seminars, and research projects.
3. Graduates will develop strong analytical and critical thinking skills, enabling them to analyze complex mathematical problems, identify patterns, and develop logical and rigorous proofs. They will be adept at applying mathematical principles to solve real-world problems.
4. Students will develop exceptional problem-solving skills, both in theoretical and practical contexts. They will be able to formulate and solve mathematical problems using appropriate mathematical techniques and tools.
5. The Honours by Research component of the program will equip students with the necessary skills to conduct independent mathematical research. Graduates will be proficient in formulating research questions, designing experiments or investigations, collecting and analyzing data, and presenting their findings in a coherent and rigorous manner.
6. Students will be capable of formulating mathematical models, interpreting their results, and making informed predictions or decisions based on the models.
7. Students will be able to explain mathematical concepts clearly, write technical reports and research papers, and engage in scholarly discussions.
8. Students will develop proficiency in using mathematical software, programming languages, and computational tools for data analysis, numerical simulations, and mathematical modeling.
9. Students will develop an understanding of the ethical responsibilities and professional standards associated with mathematical research and practice. They will exhibit integrity, intellectual honesty, and respect for intellectual property rights in their work.
B. Sc. Programme Framework: Credit Distribution

Level / Difficulty	Sem	Subject-1 (Selected as Major)						Subject-2		Subject-3		$\frac{(\mathrm{SEC})}{\mathrm{P}}$	GE/OE		IKS	AEC	VEC	CC	Total
			T			P		T	P	P	T		T	P					
$\begin{array}{r} \text { Certificate } \\ 4.5 / 100 \end{array}$	I		02			02		02	02	02	02	-	02		02	02	02	02	22
	II		02			02		02	02	02	02	02	-	02	--	02	02	02	22
		Credits Related to Major						Selected as Minor											
		Core		Elective		VSC	FP / OJT/ CEP/RP												
		T	P	T	P	P	P	T	P			P	T	P		-	-	-	-
Diploma$5.0 / 200$	III	04	02	--		02	02	02	02			02	02			02	-	02	22
	IV	04	02	--		02	02	02	02			02		02	--	02	-	02	22
$\begin{array}{c\|} \hline \text { Degree } \\ 5.5 / 300 \end{array}$	V	06	04	02	02	2	2	02	-	-		-	-		02	-	-	-	22
	VI	06	04	02	02	2	4	02	-	-		-	-		-	-	-	-	22
Total		24	16	04	04	08	10	10	08	04	04	06	08		04	08	04	08	132
$6.0 / 400$ Honours	VII	08	06	02	02	-	RM-04												22
	VIII	08	06	02	02		OJT-04												22
6.0/400 Honours with Research	VII	06	04	02	02		RM-04 RM-04												22
	VIII	06	04	02	02		RM-08												22
Total		40/36	28/24	08	08	08	18/26	10	08	04	04	06	04	04	04	08	04	08	176

B.Sc. Programme Framework: Course Distribution

Level /	Sem	Subject-1 (Selected as Major)						Subject-2		Subject-3		(SEC)	GE/OE		IKS	AEC	VEC	CC	Total
Di			T			P		T	P	P	T	P	T	P					
$\begin{gathered} \text { Certificate } \\ 4.5 / 100 \end{gathered}$	I		01			01		01	01	01	01	-	01		01	01	01	01	11
	II		01			01		01	01	01	01	01	-	01	--	01	01	01	11
		Credits Related to Major						Selected as Minor											
		Core		Elective		VSC	FP / OJT/ CEP/RP												
		T	P	T	P	P	P	T	P			P	T	P	-	-	-	-	-
$\begin{gathered} \text { Diploma } \\ 5.0 / 200 \end{gathered}$	III	02	01	--		01	FP-01	01	01			01	01		-	01	-	01	11
	IV	02	01	--		01	CEP-01	01	01			01		01	--	01	-	01	11
$\begin{aligned} & \text { Degree } \\ & 5.5 / 300 \end{aligned}$	V	03	02	01	01	01	FP-01	01	-	-		-			01	-	-	-	11
	VI	03	02	01	01	01	OJT-01	01	-	-		-	-		-	-	-	-	10
Total		12	08	02	02	04	04			02	02	03	04		02	04	02	04	65
6.0/400 Honours	VII	03	03	01	01	-	RM-01												09
	VIII	03	03	01	01		OJT-01												09
6.0/400 Honours with Research	VII	02	02	01	01		$\begin{aligned} & \text { RM-01 } \\ & \text { RM-01 } \end{aligned}$												08
	VIII	02	02	01	01		RM-01												07
Total		18/16	14/12	04	04	04	06/07	06	04	02	02	03			02	04	02	04	83/80

NEP 2.0

B. Sc. -Mathematics: Credit and Course Distribution in Brackets

Level / Difficult y	Sem	Subject-1							Total
		T			P				
4.5	I	02 (01)			02 (01)				04(02)
	II	02 (01)			02 (01)				04(02)
		Credits Related to Major						IKS	
		Core		Elective		VSC	$\begin{gathered} \text { FP / OJT/ } \\ \text { CEP } \end{gathered}$		
		T	P	T	P	P	P	T	
5.0	III	04(02)	02(01)	--		02(01)	FP-02(01)		10(05)
	IV	04(02)	02(01)	--		02(01)	CEP-02(01)		10(05)
5.5	V	06(03)	04(02)	02(01)	02(01)	02(01)	FP-02(01)	02(01)	20 (10)
	VI	06(03)	04(02)	02(01)	02(01)	02(01)	OJT-04(01)		20(09)
Total		12	08	(02)	(02)	04	04	(01)	33
6.0	VII	03	03	(01)	(01)	-	RM-04(01)		22(09)
	VIII	03	03	(01)	(01)		OJT-04(01)		22(09)
6.0	VII	(02)	(02)	(01)	(01)		$\begin{aligned} & \text { RM-04(01) } \\ & \text { RP-04(01) } \end{aligned}$		22(08)
	VIII	(02)	(02)	(01)	(01)		RM-08(01)		22(07)
		18/16	14/12	04	04	04	06/07	(01)	51/48

Programme Framework (Courses and Credits): B. Sc. Mathematics

$\begin{aligned} & \mathrm{S} \\ & \mathrm{r} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \mathrm{o} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{e} \\ & \mathrm{a} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{e} \\ & \mathrm{~m} \\ & \mathrm{es} \\ & \text { te } \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{e} \\ & \mathrm{v} \\ & \mathrm{el} \end{aligned}$	Cours e Type	Course Code	Title	$\begin{aligned} & \mathrm{Cr} \\ & \text { edi } \\ & \text { ts } \end{aligned}$
1.	I	I	4.5	DSC-01	$\begin{aligned} & \text { BS-MT 111T } \\ & \text { (A) } \end{aligned}$	Algebra-I	02
					BS-MT 111T (B)	Applied Algebra -I	02
2.	I	I	4.5	$\begin{gathered} \mathrm{DS} \\ \mathrm{C}-02 \end{gathered}$	$\begin{aligned} & \text { BS-MT 112P } \\ & \text { (A) } \end{aligned}$	Introduction to ' C ' Programming	02
					$\text { BS-MT } 112 \mathrm{~T}$ (B)	Descriptive Statistics I	02

3.							
	I	II	4.5	DSC-03	$\begin{aligned} & \text { BS-MT } 121 \mathrm{~T} \\ & \text { (A) } \end{aligned}$	Algebra-II	02
					$\begin{aligned} & \text { BS-MT } 121 \mathrm{~T} \\ & \text { (B) } \end{aligned}$	Applied Algebra -I	02
4.	I	II	4.5	DSC-04	$\begin{aligned} & \text { BS-MT 122P } \\ & \text { (A) } \end{aligned}$	Numerical Techniques using SciLab	02
					$\begin{aligned} & \text { BS-MT } 122 \mathrm{~T} \\ & \text { (B) } \end{aligned}$	Mathematical Statistics	02
5.	II	III	5.0	DSC-05	BS-MT 231T	Linear Algebra	02
6.	II	III	5.0	DSC-06	BS-MT 232T	Calculus-I	02
7.	II	III	5.0	DSC-07	BS-MT 233P	LaTeX -I (Scientific Writing)	02
8.	II	III	5.0	VSC-01	BS-MT 234P	Mathematical Transforms	02
9.	II	III	5.0	FP-01	BS-MT 235T	Field Project	02
10.	II	IV	5.0	DSC-08	BS-MT 241T	Analytical Geometry/Differential Equations	02
11.	II	IV	5.0	DSC-09	BS-MT 242T	Calculus-II	02
12.	II	IV	5.0	DSC-10	BS-MT 243P	Python Programming I	02
13.	II	IV	5.0	VSC-02	BS-MT 243T	Machine Learning- I	02
14.	II	IV	5.0	CEP-01	BS-MT 245P	Community Engagement Project	02
15.	III	V	5.5	DSC-11	BS-MT 351T	Multivariable Calculus	02
16.	III	V	5.5	DSC-12	BS-MT 352T	Real Analysis-I	02
17.	III	V	5.5	DSC-13	BS-MT 353T	Metric Space	02
18.	III	V	5.5	DSC-14	BS-MT 354P	Ordinary Differential Equations	02
19.	III	V	5.5	DSC-15	BS-MT 355P	Operations Research	02
20.	III	V	5.5	DSE-01	BS-MT 356T	Group Theory	02
21.	III	V	5.5	DSE-02	BS-MT 357P	Combinatorics	02
22.	III	V	5.5	VSC-03	BS-MT 358P	Machine Learning- II	02
23.	III	V	5.5	FP-02	BS-MT 359P	Python Programming II	02
24.	III	V	5.5	IKS-02	BS-MT 360T	Vedic Mathematics	02
25.	III	VI	5.5	DSC-16	BS-MT 361T	Complex Analysis	02
26.	III	VI	5.5	DSC-17	BS-MT 362T	Real Analysis-II	02
27.	III	VI	5.5	DSC-18	BS-MT 363T	Ring Theory	02

28.	III	VI	5.5	DSC-19	BS-MT 364P	Partial Differential Equations	02
29.	III	VI	5.5	DSC-20	BS-MT 365P	Optimization Techniques	02
30.	III	VI	5.5	DSE-03	BS-MT 366T	Computational Geometry	02
31.	III	VI	5.5	DSE-04	BS-MT 367P	Number Theory	02
32.	III	VI	5.5	VSC-04	BS-MT 368T	Graph Theory	02
33.	III	VI	5.5	OJT-01	BS-MT 369T	OJT	04

B. Sc. Mathematics (Honours)

34.	IV	VII	6.0	DSC-21	BS-MT 471T	Linear Algebra	03
35.	IV	VII	6.0	DSC-22	BS-MT 472T	Real Analysis	03
36.	IV	VII	6.0	DSC-23	BS-MT 473T	Group Theory	02
37.	IV	VII	6.0	DSC-24	BS-MT 474P	Advanced LaTeX	02
38.	IV	VII	6.0	DSC-25	BS-MT 475P	Integral Equations	02
39.	IV	VII	6.0	DSC-26	BS-MT 476P	Lab for Numerical Linear Algebra	02
40.	IV	VII	6.0	DSE-05	BS-MT 477T	Ordinary Differential Equations	02
41.	IV	VII	6.0	DSE-06	BS-MT 478T	Multivariable Calculus	02
42.	IV	VII	6.0	RM-01	BS-MT 479T	Research Methodology and Computer Applications	04
43.	IV	VIII	6.0	DSC-27	BS-MT 481T	Topology	03
44.	IV	VIII	6.0	DSC-28	BS-MT 482T	Advanced Complex Analysis	03
45.	IV	VIII	6.0	DSC-29	BS-MT 483T	Ring Theory	02
46.	IV	VIII	6.0	DSC-30	BS-MT 484T	Advanced Numerical Analysis	02
47.	IV	VIII	6.0	DSC-31	BS-MT 483T	Advanced Operations Research	02
48.	IV	VIII	6.0	DSC-32	BS-MT 484T	Mathematical Statistics	02
49.	IV	VIII	6.0	DSE-07	BS-MT 485T	Partial Differential Equations	02

50.	IV	VIII	6.0	DSE-08	BS-MT 485T	Coding Theory	02
51.	IV	VIII	6.0	OJT-02	BS-MT 486T	OJT	04

B. Sc. Mathematics (Honours with Research)

34.	IV	VII	6.0	DSC-21	BS-MT 471T	Linear Algebra	03
35.	IV	VII	6.0	DSC-22	BS-MT 472T	Real Analysis	03
36.	IV	VII	6.0	DSC-23	BS-MT 473P	Group Theory	02
37.	IV	VII	6.0	DSC-24	BS-MT 474P	Advanced LaTeX	02
38.	IV	VII	6.0	DSE-05	BS-MT 473T	Integral Equations	$\mathbf{0 2}$
39.	IV	VII	6.0	DSE-06	BS-MT 474P	Ordinary Differential Equations	$\mathbf{0 2}$
40.	IV	VII	6.0	RM-01	BS-MT 476T	Research Methodology and Computer Applications	04
41.	IV	VII	6.0	RP-01	BS-MT 477T	PROJECT	04
42.	IV	VIII	6.0	DSC-19	BS-MT 481T	Topology	
43.	IV	VIII	6.0	DSC-20	BS-MT 482T	Advanced Complex Analysis	03
44.	IV	VIII	6.0	DSC-21	BS-MT 483T	Ring Theory	02
45.	IV	VIII	6.0	DSE-04	BS-MT 485T	Advanced Numerical Analysis	02
46.	IV	VIII	6.0	DSE-07	BS-MT 473T	Mathematical Statistics	$\mathbf{0 2}$
47.	IV	VIII	6.0	DSE-08	BS-MT 474P	Advanced Operations Research	$\mathbf{0 2}$
4						BRII	68
4	IV	VII	6.0	PR-02	BS-MT 486T	PROJECT	03

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's
New Arts, Commerce and Science College, Ahmednagar
(Autonomous)
Syllabus
B. Sc. -I (Mathematics)

Title of the Course: Algebra I								
Year: I		Semester: I						
Course	Course Code	Credit Distribution		Credits	$\begin{aligned} & \text { Allotte } \\ & \text { d } \\ & \text { Hours } \end{aligned}$	Allotted Marks		
Type		Theory	Practical					
						CI E	ES E	Total
DSC-01	$\begin{aligned} & \hline \text { BS-MT } \\ & 111 \mathrm{~T}(\mathrm{~A}) \\ & \hline \end{aligned}$	02	00	02	30	15	35	50

Learning Objectives:

1. To introduce students with basic concepts in mathematics such as sets, relations and functions.
2. To introduce integers, complex numbers and matrices as important examples to study different algebraic structures.
3. To develop the knowledge, skills and aptitude necessary to pursue future study in mathematics.
4. Employ DeMoivre's theorem in the number of applications to solve numerical problems.

Course Outcomes (Cos): On completion of the course, students will be able to understand

1. Various properties of relations and functions.
2. Greatest common divisor, Least common multiple, and properties of divisibility.
3. Geometry of complex numbers and application of complex numbers in finding the roots of polynomials.
4. Basic properties of matrices and types of matrices.

Detailed Syllabus:

Unit 1: Sets, Relation and Functions

1.1. Sets and their representations, types of sets.
1.2. Subsets of the set of real numbers, especially intervals (with notations), power set, universal set, Venn diagrams, union and intersection of sets, difference of sets. complement of a set, properties of complement sets.
1.3. Ordered pairs, cartesian product of sets, cardinality of sets, power sets, equivalence relations, partial order relation.
1.4. Definition of a function, domain, co-domain and the range of a function, types of function, composition of functions, invertible functions and the inverse of a function.

Unit 2: Integers
(08 Hrs.)
2.1 Well Ordering Property (W.O.P) for N.
2.2 Divisibility in Z: Definition and elementary properties.
2.3 Division Algorithm, G.C.D.and L.C.M of two integers, basic properties of G.C.D., Euclidean Algorithm(statement only).
2.4 Primes, Euclid's Lemma, unique factorization theorem(statement only).

Unit 3: Complex Numbers

3.1 Definition of complex number, sum and products, basic algebraic properties.
3.2 Complex conjugates, exponential form, product and quotient.
3.3 DeMoivre's theorem(statement only) and its examples.
3.4 Roots of complex number: the $n^{\text {th }}$ roots of unity.

Unit 4: Matrices

4.1 Definition of Matrix and its properties.
4.2 Determinant, properties of determinant and transpose of matrix, trace of matrix.
4.3 Square matrices, inverse of matrices by using adjoint method.
4.4 Special types of matrices(Symmetric Matrix, skew-symmetric matrix, orthogonal matrix, Hermitian matrix, skew-Harmitian matrix).

Suggested Readings/Material:

1. Introduction to Real Analysis, R. G. Bartle and D. R. Sherbert, John Wiley and Sons Inc, fourth edition, 2010.
2. Complex Variables and Applications : Ruel. V.Churchill; McGraw Hill Co, eighth edition, 2009.
3. Ivan Niven \& H.S. Zuckerman, An introduction to number theory (Wiley Eastern Limited), (Fifth edition), 1991.
4. Elementary Linear Algebra with Application, H. Anton, C Rorres, Wiley Seventh edition, 1994.

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's
New Arts, Commerce and Science College, Ahmednagar
(Autonomous)
Syllabus
B. Sc. -I (Mathematics)

Title of the Course: Applied Algebra-I								
Year: I		Semester: I						
Course	Course Code	Credit Distribution		Credits	Allotte d Hours	Allotted Marks		
Type		Theory	Practical					
						CI E	ES	Total
DSC-01	$\begin{aligned} & \hline \text { BS-MT } \\ & 111 \mathrm{~T}(\mathrm{~B}) \\ & \hline \end{aligned}$	02	00	02	30	15	35	50

Learning Objectives:

1. This course to learn how Matrix Algebra is ubiquitous in Mathematics and therefore a strong foundation has to be laid in studying the abstract algebraic concepts intertwining geometric ideas.
2. Evaluate mathematical expressions to compute quantities that deal with linear systems.
3. Practice using row operations to solve systems of equations and understand echelon forms.
4. Understand the geometric interpretation of determinants in relation to volume and linear transformations.

Course Outcomes (Cos)

1. Earn methods to solve systems of linear equations using row reduction and matrix algebra.
2. Demonstrate proficiency in determining the inverse of matrices and recognize the conditions under which matrices are invertible, utilizing techniques such as Gaussian elimination and elementary row operations.
3. To develop the knowledge, skill and aptitude necessary to pursue further study of mathematics.
4. Use LU decomposition to efficiently solve linear equations and understand linear independence.
5. Understand determinants and how they relate to volume and solving systems of equations using Cramer's rule.

Detailed Syllabus:

Unit 1 : Introduction

(08 Hrs.)
1.1 Matrix Operations
1.2 Types of Matrices
1.3 The Inverse of a Matrix
1.4 Characterization of invertible matrices

Unit 2 : Determinants
2.1 Introduction to determinants
2.2 Properties of determinants
2.3 Cramer's rule,
2.4 Volume and linear transformations

Unit 3 : Linear Equations in Linear Algebra-I

(08 Hrs.)
3.1 System of Linear equations
3.2 Row reduction and echelon forms
3.3 Vector equations
3.4 The matrix equation $\mathrm{Ax}=\mathrm{b}$
3.5 Solution sets of linear systems

Unit 4 : Linear Equations in Linear Algebra -II

(08 Hrs.)
4.1 Partitioned Matrices
4.2 Matrix factorization [Lu decomposition]
4.3 Linear Independence
4.4 Introduction to linear transformation
4.5 The matrix of linear transformation

Suggested Readings/Material:

1. Linear Algebra and its Applications, David C Lay, Steven R. Lay, Judi J. MacDonald Pearson Publication,2016, Fifth Edition.
2. Elementary Linear Algebra with supplemental Applications, Howard Anton and others, Wiley Student Edition.
3. Matrix and Linear Algebra (aided with MATLAB), Kanti Bhushan Datta, Eastern Economic Edition.

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's
New Arts, Commerce and Science College, Ahmednagar
(Autonomous)
Syllabus
B. Sc. -I (Mathematics)

Title	Course: In	ion	Progr	ing				
Year: I			Se	ester: I				
Course	Course Code	Credit D	tribution	Credits	Allotte		tted	arks
Type		Theory	Practical		d			
						CI E	ES	Total
DSC-02	$\begin{aligned} & \hline \text { BS-MT } \\ & 112 \mathrm{P}(\mathrm{~A}) \\ & \hline \end{aligned}$	00	02	02	60	15	35	50

Learning Objectives:

1. To introduce the foundations of computing, programming and problem solving using computers.
2. To develop the ability to analyze a problem and devise an algorithm to solve it.
3. To formulate algorithms, pseudocodes and flowcharts for arithmetic and logical problems.
4. To understand structured programming approaches.
5. To develop the basic concepts and terminology of programming in general.

Course Outcomes (Cos): On completion of the course, students will be able to

1. Implement algorithms in C language.
2. Test, debug and execute programs.
3. Explore algorithmic approaches to problem solving.
4. Develop modular programs using control structures.
5. Develop programs using functions.

Detailed Syllabus:

Practical 1: Introduction of C language using pseudo code.
Practical 2: Use of Data types and simple operators.
Practical 3: Decision control statements(simple 'if', 'if-else').
Practical 4: Decision control statements(nested-if).
Practical 5: Decision control statements(switch case).
Practical 6: Use of 'while' loop.
Practical 7: Use of 'do while' loop.
Practical 8: Use of 'for' loop.

Practical 9: Programs using standard library functions.
Practical 10: Introduction to user defined functions
Practical 11: Types of user defined functions
Practical 12: Recursive functions.

Suggested Readings/Material:

1. The C Programming Language. By Brian W. Kernighan, Dennis M. Ritchie.
2. Programming in C, A Practical approach, Ajay Mittal, Pearson.
3. C, the complete reference, Schildt Herbert, 4th edition, Mc-Graw Hill.
4. Let Us C, Yashavant Kanetkar,BPB publicatiions

New Arts, Commerce and Science College, Ahmednagar
(Autonomous)
Syllabus
B. Sc. -I (Mathematics)

Title of the Course: Descriptive Statistics-I								
Year: I		Semester: I						
Course	Course Code	Credit Distribution		Credits	$\begin{aligned} & \hline \text { Allotte } \\ & \text { d } \\ & \text { Hours } \end{aligned}$	Allotted Marks		
Type		Theory	Practical					
						CI E cher	ES E	Total
DSC-02	$\begin{aligned} & \hline \text { BS-MT } \\ & 112 \mathrm{~T}(\mathrm{~B}) \\ & \hline \end{aligned}$	02	00	02	30	15	35	50

Learning Objectives:

1. Define mean, median, mode, range, variance, and standard deviation.
2. Demonstrate an understanding of descriptive statistics.
3. Explain the difference between descriptive statistics and inferential statistics.

Course Outcomes (Cos)

1. To develop the knowledge, skill and aptitude necessary to pursue further study of statistics.
2. To develop problem solving abilities using a computer
3. By learning this course student will be able to apply these methods to real life situation draw
4.Learn how to calculate measures of central tendency and measures of dispersion.
5.Students will be able to draw the descriptive statistics for the data and interpret the data with the appropriate graphs.

Detailed Syllabus:

UNIT1: Data Condensation and Presentation of Data
1.1 Definition, importance, scope and limitations of statistics.
1.2 Data Condensation.
1.3 Graphical Representation

UNIT2: Descriptive Statistics

(12Hrs)
2.1 Measures of central tendency:Concept of central tendency
2.2 Arithmetic mean: Definition, computation for ungrouped and grouped data, properties of arithmetic mean (without proof) combined mean, weighted mean, merits and demerits.
2.3 Median and Mode: Definition, formula for computation for ungrouped and grouped data, graphical method, merits and demerits. Empirical relation between mean, median and mode (without proof)
2.4 Partition Values: Quartiles, Box Plot.
2.5 Concept of dispersion, requisites of good measures of dispersion, absolute and relative measures of dispersion.
2.6 Measures of dispersion : Range and Quartile Deviation definition for ungrouped and grouped data and their coefficients, merits and demerits,

Variance and Standard deviation: definition for ungrouped and grouped data, coefficient of variation, combined variance \& standard deviation, merits and demerits.

unit 3: Moments, Skewness and Kurtosis

3.1 Concept of Raw and central moments: Formulae for ungrouped and grouped data (only first four moments), relation between central and raw moments upto fourth order. (without proof)
3.2 Measures of Skewness: Types of skewness, Pearson and Bowley's coefficient of skewness, Measure of skewness based on moments.
3.3 Measure of Kurtosis: Types of kurtosis, Measure of kurtosis based on moments.

UNIT 4: Theory of Attributes

4.1 Attributes: Concept of a Likert scale, classification, notation of manifold classification, dichotomy, class- frequency, order of a class, positive classfrequency, negative class frequency, ultimate class frequency, relationship among different class frequencies (up to two attributes)
4.2 Consistency of data upto 2 attributes.
4.3 Concepts of independence and association of two attributes.
4.4 Yule's coefficient of association $(\mathrm{Q}),-1 \leq \mathrm{Q} \leq 1$, interpretation.

References:

1. Statistical Methods, George W. Snedecor, William G, Cochran, John Wiley \&sons
2. Programmed Statistics, B.L. Agarwal, New Age International Publishers.
3. Modern Elementary Statistics,Freund J.E. 2005, PearsonPublication
4. Fundamentals of Applied Statistics(3rd Edition), Gupta and Kapoor, S.Chand and Sons, New Delhi, 1987.
5. An Introductory Statistics ,Kennedy and Gentle

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's
New Arts, Commerce and Science College, Ahmednagar
(Autonomous)
Syllabus
B. Sc. -I (Mathematics)

Title of the Course: Algebra-II

Year: I		Semester: II						
Course Type	Course Code	Credit Distribution		Credits	AllottedHours	Allotted Marks		
		Theory	Practical					
						CI E l	ES E	Total
DSC-03	$\begin{aligned} & \hline \text { BS-MT } \\ & 121 \mathrm{~T}(\mathrm{~A}) \\ & \hline \end{aligned}$	02	00	02	30	15	35	50

Learning Objectives:

1. Analyze conditional statements and identify their components (antecedent, consequent).Demonstrate the understanding of converse, contrapositive, and inverse of conditional statements.
2. Classify functions as algebraic or transcendental.Solve trigonometric inequalities.
3. Analyze the relationship between the roots and coefficients of polynomial equations.
4. Represent systems of linear equations in matrix form.Apply Gaussian elimination method to solve systems of linear equations

Course Outcomes (Cos)

1. Students will be able to understand and apply the principles of propositional logic to solve problems and analyze statements.
2. Students will be able to analyze and graph algebraic, transcendental, and trigonometric functions, and solve equations graphically
3. Students will understand the properties and applications of polynomials, including factorization and the relationship between roots and coefficients.
4. Students will be able to solve systems of linear equations using various methods and understand the concept of matrix representation.

Detailed Syllabus:

Unit 1: Mathematical Logic

1.1 Propositional Logic

1.2 Propositions

1.3 Conditional Statements

1.4 Converse, Contrapositive and inverse
1.4 Truth Tables of Compound Propositions

Unit 2: Tracing of Curves

2.1 Algebraic function

2.2 Transcendental function

2.3 Trigonometric inequalities
2.4 Solving functions graphically

Unit 3: Polynomial

3.1 Polynomials, The remainder and factor theorem, Synthetic division,
3.2 Factored form of a polynomial,
3.3 Fundamental theorem of algebra,
3.4 Relations between the roots and the coefficients of polynomial equations

Unit 4: System of linear equations

4.1 System of m linear equations in n unknowns; Homogeneous systems, Non homogeneous system, Matrix form of System of Equations
4.2 Echelon form; row reduced echelon form of a matrix Definition of rank of a matrix.

Examples.

4.3 Gauss Elimination Method, Gauss Jordan Method

4.4 Consistency of a system of non homogeneous equations; Condition of consistency i.e. for $\mathrm{AX}=\mathrm{B}, \rho[\mathrm{A}, \mathrm{B}]=\rho[\mathrm{A}]$ (without proof).

Suggested Readings/Material:

1. Kenneth H. Rosen Discrete Mathematics and Its Applications Seventh Edition.
2. Amit M Agarwal Play With Graphs .
3. First Course in the Theory of Equations, Dickson, Leonard Eugene (2009).
4. Matrices : Shanti Narayan; S.Chand \& Co. N.Delhi

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's
New Arts, Commerce and Science College, Ahmednagar
(Autonomous)
Syllabus
B. Sc. -I (Mathematics)

Year: I		Semester: I						
Course Type	Course Code	Credit Distribution		Credits	Allotte d Hours	Allotted Marks		
		Theory	Practical					
						CI	ES	Total
DSC-01	$\begin{aligned} & \hline \text { BS-MT } \\ & 121 \mathrm{~T}(\mathrm{~B}) \end{aligned}$	02	00	02	30	15	35	50

Learning Objectives:

1. Understand vector spaces, subspaces, null spaces, and column spaces.
2. Identify linearly independent sets, bases, and calculate the dimension of a vector space.
3. Define eigenvalues, eigenvectors, and perform diagonalization of matrices.
4. Apply orthogonality concepts including inner products, orthogonal sets, and projections.
5. Comprehend geometric concepts in vector spaces such as affine combinations, independence, and convex combinations.

Course Outcomes (Cos)

1. Demonstrate proficiency in fundamental concepts of vector spaces and their applications.
2. Analyze and solve problems involving eigenvalues, eigenvectors, and diagonalization.
3. Apply orthogonality principles to solve problems related to vectors and matrices.
4. Utilize geometric concepts effectively in analyzing vector spaces and their properties.
5. Demonstrate the ability to apply learned concepts to real-world problems in mathematics and related fields.

Detailed Syllabus:

Unit 1: Vector Spaces

1.1 Vector spaces and subspaces
1.2 Null spaces, column spaces and linear transformations.
1.3 Linearly independent sets: Bases

1.4 Coordinate systems

1.5 The dimension of a vector space

1.6 Rank

Unit 2: Eigenvalues and Eigenvectors

(08 Hrs.)
2.1 Eigenvalues and Eigenvectors
2.2 The characteristic equation
2.3 Diagonalization
2.4 Eigenvectors and Linear transformations
2.5 Applications of eigenvalue and eigenvector

Unit 3: Orthogonality and Symmetric Matrices
(08 Hrs.)
3.1 Inner product, length and orthogonality
3.2 Orthogonal sets
3.3 Orthogonal Projections
3.4 Diagonalization of Symmetric Matrices
3.5 Applications of orthogonality and symmetric matrices

Unit 4: The Geometry of vector spaces

(06 Hrs.)
4.1 Affine combinations
4.2 Affine independence
4.3 Convex combinations
4.4 Examples and Applications

Suggested Readings/Material:

1. Linear Algebra and its Applications (5th Edition) David C Lay, Steven R. Lay, Judi J. MacDonaldPearson Publication, Fifth Edition, 2016.
2. Elementary Linear Algebra with supplemental Applications, by Howard Anton and others, Wiley Student Edition, Fourth edition.
3. Matrix and Linear Algebra (aided with MATLAB), byKantiBhushanDatta, Eastern Economic Edition, Fourth edition.

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's
New Arts, Commerce and Science College, Ahmednagar
(Autonomous)
Syllabus
B. Sc. -I (Mathematics)

Learning Objectives:

1. Understand the basic syntax and functionality of Scilab.
2. Generate 2-D and 3-D plots for standard functions to visualize data and functions.
3. Understand the principles and application of these numerical methods for solving mathematical problems.
4. Understand how these techniques approximate definite integrals and their applications in real-world problems.

Course Outcomes (Cos)

1. Understanding the theoretical and practical aspects of the use of numerical methods.
2. Implementing numerical methods for a variety of multidisciplinary applications.
3. Establishing the limitations, advantages and disadvantages of numerical methods.
4. Understand the fundamental concepts of mathematical functions and their applications in various fields.
5. Understand the concept of continuity and its implications in mathematical functions.

Detailed Syllabus:

Practical 1: Introduction of scilab with some basic commands
e.g., size, length, eye, ones, rand, zeros etc.
use of ' deff ' command for one and two variable functions.
Practical 2: Basic operations on matrices.
e.g., addition, subtraction, multiplication, square etc.
solution for the system of linear equations.
Draw 2-D and 3-D graph for some standard functions

Practical 3: Scilab programming: Bisection Method
Practical 4: Scilab programming: Regula-Falsi Method
Practical 5: Scilab programming: Newton-Raphson Method
Practical 6: Scilab programming: Newton's forward interpolation formula.
Practical 7: Scilab programming: Newton's backward interpolation formula.
Practical 8: Scilab programming: Numerical Integration by Trapezoidal method.
Practical 9: Scilab programming: Numerical Integration by Simpson's ($1 / 3$)rd rule.
Practical 10: Scilab programming: Numerical Integration by Simpson's (3/8)th rule.
Practical 11: Scilab programming:Euler's Method
Practical 12: Scilab programming:Runge-Kutta Method

Suggested Readings/Material:

1. A textbook of Computer Based Numerical and Statistical Techniques, by A. K. Jaiswal and Anju Khandelwal. New Age International Publishers.
2. Numerical Methods For Engineers S. C. Chapra And R. P. Canale McGraw Hill, New York 5th Edition 2006 ISBN: 0071244298
3. H.C. Saxena; Finite differences and Numerical Analysis, S. Chand and Company.
4. K.E. Atkinson; An Introduction to Numerical Analysis, Wiley Publications

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's
New Arts, Commerce and Science College, Ahmednagar
(Autonomous)
Syllabus
B. Sc. -I (Mathematics)

Year: I		Semester: II						
Course Type	Course Code	Credit Distribution		Credits	Allotte d Hours	Allotted Marks		
		Theory	Practical					
						CI E	ES	Total
DSC-03	$\begin{aligned} & \hline \text { BS-MT } \\ & 122 \mathrm{~T}(\mathrm{~B}) \end{aligned}$	02	00	02	30	15	35	50

Learning Objectives:

1.Describe a data set including both categorical and quantitative variables to support or refute a statement
2.To develop a students with the problems related to Permutation, Combination.
3.To Build an understanding of the fundamental concept of Probability Theory.

Course Outcomes (Cos)

1. To develop the knowledge, skill and aptitude necessary to pursue further study of mathematics.
2. To develop problem solving abilities using a computer.
3. Use basic probability rules including Additive and Multiplicative laws using the terms independent and Mutually Exclusive events.
4. Understand the concept of discrete and continuous random variables.

UNIT 1:Theory of Probability

1.1 Counting Principles, Permutation, and Combination.
1.2 Deterministic and non-determination models.
1.3 Random Experiment, Sample Spaces (Discrete and continuous)
1.4 Events: Types of events, Operations on events.
1.5 Probability - classical definition, probability models, axioms of probability, probability of an event.
1.6 Theorems of probability (without proof)

UNIT 2: Conditional Probability and Independence

2.1 Concepts and definitions of conditional probability, multiplication theorem
2.2 Bayes' theorem (without proof). True positive, false positive and sensitivity of test as application of Bayes' theorem.
2.3 Concept of Posterior probability, problems on posterior probability.
2.4 Concept and definition of independence of two events.

UNIT 3: Random Variable

3.1 Definition of random variable (r.v.), discrete and continuous random variable.
3.2 Definition of probability mass function (p.m.f.) of discrete r.v. and Probability density function of continuous r.v..
3.3 Cumulative distribution function (c.d.f.) of discrete and their properties.
3.1 Definition of expectation and variance of discrete r.v ,theorem on expectation and variance (statement only).
3.4 Determination of median and mode using p.m.f. only

UNIT 4 : Standard Discrete Distributions

4.1 Discrete Uniform Distribution: definition, mean, variance.
4.2 Binomial Distribution: definition, mean, variance, additive property, Bernoulli distribution as a particular case with $\mathrm{n}=1$.
4.3 Geometric Distribution (p.m.f $\mathrm{p}(\mathrm{x})=\mathrm{pq}^{\mathrm{x}}, \mathrm{x}=0,1,2 \ldots$.): definition,mean, variance.
4.4 Poisson Distribution: definition, mean, variance, mode, additive property, limiting case of $B(n, p)$

* Only statement of mean and variance, derivation is not expected.

References:

1. A First course in Probability, Sheldon Ross.Pearson Education Inkc.
2. Statistical Methods (An IntroductoryText), Medhi J. 1992 , New Age International.
3. Modern Elementary Statistics ,Freund J.E. 2005, Pearson Publication.
4.Probability, Statistics, Design of Experiments and Queuing Theory with Applications of Computer Science Trivedi K.S. 2001, Prentice Hall of India, New Delhi.
4. Fundamentals of Mathematical Statistics(3rd Edition), Gupta S. C. and Kapoor V. K. 1987 S. Chand and Sons, New Delhi.
5. Mathematical Statistics (3 ${ }^{\text {rd }}$ Edition), Mukhopadhyay P. 2015, Books And Allied (P), Ltd.
