Ahmednagar Jilha Maratha Vidya Prasarak Samaj's New Arts, Commerce, and Science College Ahmednagar (Autonomous) (Affiliated to Savitribai Phule Pune University, Pune)



**National Education Policy (NEP)** Choice Based Credit System (CBCS)

> Programme Framework B. Sc. - I (Statistics)

# **Implemented from** Academic Year 2024-25

#### Ahmednagar Jilha Maratha Vidya Prasarak Samaj's

# New Arts, Commerce and Science College, Ahmednagar (Autonomous)

## **Board of Studies in Statistics**

| Sr. No. | Name                | Designation              |
|---------|---------------------|--------------------------|
| 1.      | Dr. A. A. Kulkarni  | Chairman                 |
| 2.      | Prof. S. Kawale     | Vice-Chancellor Nominee  |
| 3.      | Dr. A.K. Khamborkar | Academic Council Nominee |
| 4.      | Dr. A.J. Shivagaje  | Academic Council Nominee |
| 5.      | Dr. S.B.Pathare     | Alumni                   |
| 6.      | Mr. Vijay Narkhede  | Invited Member           |
| 7.      | Dr. B. K. Thorve    | Member                   |

| 8.  | Prof. K. B. Mane     | Member |
|-----|----------------------|--------|
| 9.  | Prof. B. P. Kharat   | Member |
| 10. | Prof. M. Z. Shaikh   | Member |
| 11. | Prof. S. S. Bansode  | Member |
| 12. | Prof. S.S. Dhadiwal  | Member |
| 13. | Prof. V. V. Khajekar | Member |
| 14. | Prof. D. D. Kale     | Member |
| 15. | Dr. S.D Jagtap       | Member |
| 16. | Dr. B.P. Thakur      | Member |
| 17. | Prof. S.A Tarate     | Member |
| 18. | Dr.N.T Shelke        | Member |

#### 1. Prologue/ Introduction of the programme:

It is known that in economic activities are of three types, agriculture, industrial and service. In the same way the subject Statistics is a SERVICE SCIENCE having potential to address the problems in these three fields. In research application of Statistics is mandatory. In the present days, apart from traditional field of career, Data Science, Data Analytics, Data Mining, Data Visualization are the upcoming field of career for Statistics students. In these field student must have mathematical ability, statistical thinking, computer (Software and programming) knowledge and communication (Verbal and written). These points are taken into consideration to design the syllabus and examination pattern of Statistics. In addition to academics, the department takes care to arrange a series of lectures on interview skills, preparation of CV, improve communication skill and overall personality development. The students are given the task of event management so that they can practice the principles of management such as leadership, creativity, communication, time management, group activity, team work, etc. In general, through curricular, co-curricular and extra-curricular activities student in three years is developed as thought provoker, problem solver, technologically sound, with command on communication, strong self-confidence.

B. Sc. in Statistics program is of three years' duration and B.Sc. in Stattistics Honours with four year duration having semester pattern for all the years. The important feature of the syllabus is that, all practical's form first year to third year will be conducted on computer using MS-EXCEL/ R Suit, Python programming and Tableau.

The course on Tableau will give an opportunity to learn thousands of various data presentation types and to present the complex data by easy way. The practical examinations of all courses will be on computer. In short, maximum exposure is given to students to work on computer and evaluate them on computer.

The syllabus is framed with appropriate weightage of theory, applied and skill enhancement courses. After receiving B.Sc. degree, student is expected to have minimum knowledge of various courses and student will have ability to analyze the data with relevant interpretation of results. After completion of B.Sc. honours students get maximum knowledge about statistics, so that student can handle any big data.

### 2. Programme Outcomes (POs)

Students enrolled in the program complete a curriculum that exposes and trains students in a full range of essential skills and abilities. They will have the opportunity to master the following objectives.

- 1. Student will achieve the skill of understanding the data.
- 2. Student will be able to develop the data collection instrument.
- 3. Student will have skill to write a story using data visualization.
- 4. Student will understand the interdisciplinary approach to correlate the statistical concepts with concepts in other subjects.
- 5. Student will be made aware of history of Statistics and hence of its past, present and future role as part of our culture.
- 6. Students will demonstrate conceptual domain knowledge of the Statistics in an integrated manner.
- 7. Student will play the key role in management for effective functioning.

|                            |      |       |       |          |          |        |                     |               |       |      | 2 10 11 |       |    |     |     |     |     |    |       |
|----------------------------|------|-------|-------|----------|----------|--------|---------------------|---------------|-------|------|---------|-------|----|-----|-----|-----|-----|----|-------|
| Level /                    | G    |       | Subj  | ect-1 (S | elected  | as Maj | jor)                | Subj          | ect-2 | Subj | ect-3   | (SEC) | GE | /OE | W   |     |     | aa |       |
| Difficulty                 | Sem  |       | Т     |          |          | Р      |                     | Т             | Р     | Р    | Т       | Р     | Т  | Р   | IKS | AEC | VEC | CC | Total |
| Certificate                | Ι    |       | 02    |          |          | 02     |                     | 02            | 02    | 02   | 02      | -     | 02 |     | 02  | 02  | 02  | 02 | 22    |
| 4.5 / 100                  | II   |       | 02    |          |          | 02     |                     | 02            | 02    | 02   | 02      | 02    | -  | 02  |     | 02  | 02  | 02 | 22    |
|                            |      |       | Cr    | edits Re | elated t | o Majo | r                   |               |       |      |         |       |    |     |     |     |     |    |       |
|                            |      | C     | ore   | Ele      | ctive    | VSC    | FP / OJT/<br>CEP/RP | Select<br>Min |       |      |         |       |    |     |     |     |     |    |       |
|                            |      | Т     | Р     | Т        | Р        | Р      | Р                   | Т             | Р     |      | -       | Р     | Т  | Р   | -   | -   | -   | -  | -     |
| Diploma                    | Ш    | 04    | 02    |          |          | 02     | 02                  | 02            | 02    |      | -       | 02    | 02 |     | -   | 02  | -   | 02 | 22    |
| 5.0 / 200                  | IV   | 04    | 02    |          |          | 02     | 02                  | 02            | 02    |      | -       | 02    |    | 02  |     | 02  | -   | 02 | 22    |
| Degree                     | V    | 06    | 04    | 02       | 02       | 2      | 2                   | 02            | -     |      | -       | -     |    | -   | 02  | -   | -   | -  | 22    |
| 5.5 /300                   | VI   | 06    | 04    | 02       | 02       | 2      | 4                   | 02            | -     |      | -       | -     |    | -   | -   | -   | -   | -  | 22    |
| Total                      |      | 24    | 16    | 04       | 04       | 08     | 10                  | 10            | 08    | 04   | 04      | 06    | 0  | 8   | 04  | 08  | 04  | 08 | 132   |
| 6.0/400                    | VII  | 08    | 06    | 02       | 02       | -      | RM-04               |               |       |      |         |       |    |     |     |     |     |    | 22    |
| Honours                    | VIII | 08    | 06    | 02       | 02       |        | <b>OJT-04</b>       |               |       |      |         |       |    |     |     |     |     |    | 22    |
| 6.0/400<br>Honours<br>with | VII  | 06    | 04    | 02       | 02       |        | RM-04<br>RM-04      |               |       |      |         |       |    |     |     |     |     |    | 22    |
| Research                   | VIII | 06    | 04    | 02       | 02       |        | <b>RM-08</b>        |               |       |      |         |       |    |     |     |     |     |    | 22    |
| Total                      |      | 40/36 | 28/24 | 08       | 08       | 08     | 18/26               | 10            | 08    | 04   | 04      | 06    | 04 | 04  | 04  | 08  | 04  | 08 | 176   |

# **Programme Framework: Credit Distribution**

| B.Sc | . Programme | Framework: | Course D | istribution |
|------|-------------|------------|----------|-------------|
|------|-------------|------------|----------|-------------|

| Level /                    | 9    |       | Subj  | ect-1 (S | elected  | l as Maj | or)                 | Subj          | ect-2 | Subj | ect-3 | (SEC) | GE | /OE | WG  |     | VEC | 00 |       |
|----------------------------|------|-------|-------|----------|----------|----------|---------------------|---------------|-------|------|-------|-------|----|-----|-----|-----|-----|----|-------|
| Difficulty                 | Sem  |       | Т     |          |          | Р        |                     | Т             | Р     | Р    | Т     | Р     | Т  | Р   | IKS | AEC | VEC | CC | Total |
| Certificate                | Ι    |       | 01    |          |          | 01       |                     | 01            | 01    | 01   | 01    | -     | 01 |     | 01  | 01  | 01  | 01 | 11    |
| 4.5 / 100                  | II   |       | 01    |          |          | 01       |                     | 01            | 01    | 01   | 01    | 01    | -  | 01  |     | 01  | 01  | 01 | 11    |
|                            |      |       | Cro   | edits Re | elated t | to Majo  | r                   |               |       |      |       |       |    |     |     |     |     |    |       |
|                            |      | С     | ore   | Ele      | ctive    | VSC      | FP / OJT/<br>CEP/RP | Select<br>Mir |       |      |       |       |    |     |     |     |     |    |       |
|                            |      | Т     | Р     | Т        | Р        | Р        | Р                   | Т             | Р     |      |       | Р     | Т  | Р   | -   | -   | -   | -  | -     |
| Diploma                    | Ш    | 02    | 01    |          |          | 01       | FP-01               | 01            | 01    |      |       | 01    | 01 |     | -   | 01  | -   | 01 | 11    |
| 5.0 / 200                  | IV   | 02    | 01    |          |          | 01       | <b>CEP-01</b>       | 01            | 01    |      | -     | 01    |    | 01  |     | 01  | -   | 01 | 11    |
| Degree                     | V    | 03    | 02    | 01       | 01       | 01       | FP-01               | 01            | -     |      | -     | -     |    | -   | 01  | -   | -   | -  | 11    |
| 5.5 /300                   | VI   | 03    | 02    | 01       | 01       | 01       | OJT-01              | 01            | -     |      |       | -     |    | -   | -   | -   | -   | -  | 10    |
| Total                      |      | 12    | 08    | 02       | 02       | 04       | 04                  |               |       | 02   | 02    | 03    | 0  | 4   | 02  | 04  | 02  | 04 | 65    |
| 6.0/400                    | VII  | 03    | 03    | 01       | 01       | -        | RM-01               |               |       |      |       |       |    |     |     |     |     |    | 09    |
| Honours                    | VIII | 03    | 03    | 01       | 01       |          | <b>OJT-01</b>       |               |       |      |       |       |    |     |     |     |     |    | 09    |
| 6.0/400<br>Honours<br>with | VII  | 02    | 02    | 01       | 01       |          | RM-01<br>RM-01      |               |       |      |       |       |    |     |     |     |     |    | 08    |
| Research                   | VIII | 02    | 02    | 01       | 01       |          | <b>RM-01</b>        |               |       |      |       |       |    |     |     |     |     |    | 07    |
| Total                      |      | 18/16 | 14/12 | 04       | 04       | 04       | 06/07               | 06            | 04    | 02   | 02    | 03    | 0  | 4   | 02  | 04  | 02  | 04 | 83/80 |

| Level /    | G            |        |         |               | Su      | bject-1  |                        |        | Total   |
|------------|--------------|--------|---------|---------------|---------|----------|------------------------|--------|---------|
| Difficulty | Sem          |        | Т       |               |         | Р        |                        |        |         |
|            | Ι            | 0      | 2 (01)  |               |         | 02 (01)  | )                      |        | 04(02)  |
| 4.5        | II           | 0      | 02 (01) |               |         | 02 (01)  | )                      |        | 04(02)  |
|            |              |        | C       | <b>redits</b> | Related | to Major |                        |        |         |
|            |              | C      | ore     | Ele           | ective  | VSC      | FP / OJT/<br>CEP       | IKS    |         |
|            |              | Т      | Р       | Т             | Р       | Р        | Р                      | Т      |         |
| 5.0        | Ш            | 04(02) | 02(01)  |               |         | 02(01)   | <b>FP-02(01)</b>       |        | 10(05)  |
|            | IV           | 04(02) | 02(01)  |               |         | 02(01)   | CEP-02(01)             |        | 10(05)  |
|            | $\mathbf{V}$ | 06(03) | 04(02)  | 02(01)        | 02(01)  | 02(01)   | <b>FP-02(01)</b>       | 02(01) | 20 (10) |
| 5.5        | VI           | 06(03) | 04(02)  | 02(01)        | 02(01)  | 02(01)   | OJT-04(01)             |        | 20(09)  |
| Total      |              | 12     | 08      | (02)          | (02)    | 04       | 04                     | (01)   | 33      |
| 6.0        | VII          | 03     | 03      | (01)          | (01)    | -        | <b>RM-04(01)</b>       |        | 22(09)  |
|            | VIII         | 03     | 03      | (01)          | (01)    |          | OJT-04(01)             |        | 22(09)  |
| 6.0        | VII          | (02)   | (02)    | (01)          | (01)    |          | RM-04(01)<br>RP-04(01) |        | 22(08)  |
|            | VIII         | (02)   | (02)    | (01)          | (01)    |          | <b>RM-08(01)</b>       |        | 22(07)  |
|            |              | 18/16  | 14/12   | 04            | 04      | 04       | 06/07                  | (01)   | 51/48   |

## B. Sc. -Statistics: Credit and Course Distribution in Brackets

### Programme Framework (Courses and Credits): B. Sc. Statistics

| Sr. No. | Year | Semester | Level | Course<br>Type | Course<br>Code | Title                                    | Credits |
|---------|------|----------|-------|----------------|----------------|------------------------------------------|---------|
| 1.      | Ι    | Ι        | 4.5   | DSC-01         | BS-ST 111T     | Descriptive Statistics I                 | 02      |
| 2.      | Ι    | Ι        | 4.5   | DSC-02         | BS-ST 112P     | Practical I                              | 02      |
| 3.      | Ι    | II       | 4.5   | DSC-03         | BS-ST 121T     | Basics of Probability                    | 02      |
| 4.      | Ι    | II       | 4.5   | DSC-04         | BS-ST 122 P    | Practical II                             | 02      |
| 5.      | II   | III      | 5.0   | DSC-05         | BS-ST 231T     | Continuous Probability<br>Distribution I | 02      |
| 6.      | II   | III      | 5.0   | DSC-06         | BS-ST 232T     | Discrete Probability<br>Distributions I  | 02      |
| 7.      | II   | III      | 5.0   | DSC-07         | BS-ST 233P     | Practical III (231, 232)                 | 02      |
| 8.      | II   | III      | 5.0   | VSC-01         | BS-ST 234P     | Descriptive Statistics II<br>(Practical) | 02      |
| 9.      | II   | III      | 5.0   | FP-01          | BS-ST 235P     | Field Project                            | 02      |
| 10.     | II   | IV       | 5.0   | DSC-08         | BS-ST 241T     | Discrete Probability<br>Distributions II | 02      |

| 11. | II  | IV | 5.0 | DSC-09        | BS-ST 242T | Continuous Probability<br>distribution II | 02 |
|-----|-----|----|-----|---------------|------------|-------------------------------------------|----|
| 12. | II  | IV | 5.0 | DSC-10        | BS-ST 243P | Practical IV(241, 242)                    | 02 |
| 13. | II  | IV | 5.0 | VSC-02        | BS-ST 243P | Statistical Methods                       | 02 |
|     |     |    |     |               |            | (Practical)                               |    |
| 14. | II  | IV | 5.0 | CEP-01        | BS-ST 245P | Community Engagement                      | 02 |
|     |     |    |     |               |            | Project                                   |    |
| 15. | III | V  | 5.5 | DSC-11        | BS-ST 351T | Distribution Theory I                     | 02 |
| 16. | III | V  | 5.5 | DSC-12        | BS-ST 352T | Design of Experiments                     | 02 |
| 17. | III | V  | 5.5 | DSC-13        | BS-ST 353T | Theory of Estimation                      | 02 |
| 18. | III | V  | 5.5 | DSC-14        | BS-ST 354P | Practical V (351, 352)                    | 02 |
| 19. | III | V  | 5.5 | DSC-15        | BS-ST 355P | Practical VI (353, 356)                   | 02 |
| 20. | III | V  | 5.5 | <b>DSE-01</b> | BS-ST 356T | Sampling Theroy                           | 02 |
| 21. | III | V  | 5.5 | <b>DSE-02</b> | BS-ST 357P | Practical VII (OR)                        | 02 |
| 22. | III | V  | 5.5 | <b>VSC-03</b> | BS-ST 358P | Data Analytics                            | 02 |
| 23. | III | V  | 5.5 | FP-02         | BS-ST 359P | Field Project                             | 02 |
| 24. | III | V  | 5.5 | IKS-02        | BS-ST 360T | Statistical Heritage and                  | 02 |
|     |     |    |     |               |            | Systems in India                          |    |
| 25. | III | VI | 5.5 | DSC-16        | BS-ST 361T | Distributions Theory II                   | 02 |
| 26. | III | VI | 5.5 | <b>DSC-17</b> | BS-ST 362T | Testing of Hypotheis                      | 02 |
| 27. | III | VI | 5.5 | DSC-18        | BS-ST 363T | Basics of Regression and                  | 02 |
|     |     |    |     |               |            | Time series                               |    |
| 28. | III | VI | 5.5 | DSC-19        | BS-ST 364P | Practical VIII (361, 363)                 | 02 |
| 29. | III | VI | 5.5 | DSC-20        | BS-ST 365P | Practical (Reliability                    | 02 |
|     |     |    |     |               |            | Theory)                                   |    |
| 30. | III | VI | 5.5 | DSE-03        | BS-ST 366T | Statistical Process Control               | 02 |
| 31. | III | VI | 5.5 | DSE-04        | BS-ST 367P | Practical IX (363, 366)                   | 02 |
| 32. | III | VI | 5.5 | VSC-04        | BS-ST 368T | Python Programming                        | 02 |
| 33. | III | VI | 5.5 | OJT-01        | BS-ST 369T | OJT                                       | 04 |

#### **B. Sc. Statistics (Honours)**

| <b>D</b> . DC. | Duuib |      | nouisj |               |             |                             |    |
|----------------|-------|------|--------|---------------|-------------|-----------------------------|----|
| 34.            | IV    | VII  | 6.0    | DSC-21        | BS-ST 471T  | Linear Algebra              | 03 |
| 35.            | IV    | VII  | 6.0    | DSC-22        | BS-ST 472T  | Probability Distributions   | 03 |
| 36.            | IV    | VII  | 6.0    | DSC-23        | BS-ST 473T  | Sampling Theory and         | 02 |
|                |       |      |        |               |             | Methods                     |    |
| 37.            | IV    | VII  | 6.0    | DSC-24        | BS-ST 474P  | Practical -X                | 02 |
|                |       |      |        |               |             | (Based on 471, 472))        |    |
| 38.            | IV    | VII  | 6.0    | DSC-25        | BS-ST 475P  | Practical -XI (Based on473) | 02 |
| 39.            | IV    | VII  | 6.0    | DSC-26        | BS-ST 476TP | Practical -XII              | 02 |
|                |       |      |        |               |             | (SQL)                       |    |
| 40.            | IV    | VII  | 6.0    | <b>DSE-05</b> | BS-ST 477T  | Exploratory Multivariate    | 02 |
|                |       |      |        |               |             | Analysis / Data Mining      |    |
| 41.            | IV    | VII  | 6.0    | DSE-06        | BS-ST 478P  | Practical XIII              | 02 |
|                |       |      |        |               |             | (Based on MS-ST517 T)       |    |
| 42.            | IV    | VII  | 6.0    | RM-01         | BS-ST 479T  | Research Methodology        | 04 |
| 43.            | IV    | VIII | 6.0    | DSC-27        | BS-ST 481T  | Statistical Inference       | 03 |
| 44.            | IV    | VIII | 6.0    | DSC-28        | BS-ST 482T  | Regression Analysis -II     | 03 |
| 45.            | IV    | VIII | 6.0    | DSC-29        | BS-ST 483T  | Probability Theory          | 02 |

| 46. | IV | VIII | 6.0 | DSC-30 | BS-ST 484P | Practical-XIV              | 02 |
|-----|----|------|-----|--------|------------|----------------------------|----|
|     |    |      |     |        |            | (Machine Learning)         |    |
| 47. | IV | VIII | 6.0 | DSC-31 | BS-ST 483P | Practical- XV              | 02 |
|     |    |      |     |        |            | (Based on MS-ST522)        |    |
| 48. | IV | VIII | 6.0 | DSC-32 | BS-ST 484P | Practical- XVI             | 02 |
|     |    |      |     |        |            | (Based on Numerical        |    |
|     |    |      |     |        |            | Analysis)                  |    |
| 49. | IV | VIII | 6.0 | DSE-07 | BS-ST 485T | Inferential Multivariate   | 02 |
|     |    |      |     |        |            | Analysis /Categorical Data |    |
|     |    |      |     |        |            | Analysis                   |    |
| 50. | IV | VIII | 6.0 | DSE-08 | BS-ST 485P | Practical- XVII            | 02 |
|     |    |      |     |        |            | (Based on MS-ST527)        |    |
| 51. | IV | VIII | 6.0 | OJT-02 | BS-ST 486T | OJT                        | 04 |

| Title of tl   | he Course: Descri | iptive Stati | stics I    |           |          |     |         |       |
|---------------|-------------------|--------------|------------|-----------|----------|-----|---------|-------|
| Year: I       |                   |              | Sen        | nester: I |          |     |         |       |
| Course        | Course Code       | Credit Di    | stribution | Credits   | Allotted | All | otted M | larks |
| Туре          |                   | Theory       | Practical  |           | Hours    |     |         |       |
|               |                   |              |            |           |          |     |         |       |
|               |                   |              |            |           |          | CIE | ESE     | Total |
| <b>DSC-01</b> | BS-ST 111T        | 02           | 00         | 02        | 30       | 15  | 35      | 50    |

#### Learning Objectives:

- 1. The students learn the Scope of statistics in different fields.
- 2. They understand about data collection methods
- 3. They learn different techniques of data visualizations.
- 4. They learn the elements of descriptive statistics

#### **Course Outcomes (Cos)**

After completion of this course:

- 1. Students will be aware of the variety of fields in which Statistics is used widely.
- 2. Students will have acquired knowledge of data collection methods.
- 3. Student will also gain the silent knowledge of different data types.
- 4. Student will be able to apply different statistical tools to solve real life situations.

#### **Detailed Syllabus:**

| Unit-I  | Introduction of Statistics                                                    | 6 |
|---------|-------------------------------------------------------------------------------|---|
|         | Introduction to Statistics: Meaning of Statistics, Importance of Statistics,  |   |
|         | Scope of Statistics (Field of Industry, Medical Science, Economics, Social    |   |
|         | Science, Biological Science, Agriculture, Psychology, Clinical Trial,         |   |
|         | Computer Science, Insurance and finance).                                     |   |
|         | Statistical Organizations in India and Maharashtra.                           |   |
|         | Concepts of big data, properties of big data- velocity, volume, varsity.      |   |
| Unit-II | Sampling Methods                                                              | 9 |
|         | Types of data: Primary data, Secondary data, Categorical data, directional    |   |
|         | data, Binary data, time series data, Panel data, Cross sectional data. Image, |   |
|         | Voice, Audio, Animated images, Text and Video data                            |   |
|         | Data collection methods: Census (Scope and Limitation), Sample Survey         |   |
|         | register, questionnaire, interview method                                     |   |
|         | Types of characteristics: Variable and Attribute, scaling methods             |   |
|         | Sampling methods:                                                             |   |
|         | Definition of population and statistical population, sample, Finite           |   |
|         | population, Infinite population, Homogenous population, Heterogeneous         |   |

|          | <ul> <li>population</li> <li>Advantages of sampling over census.</li> <li>Definition of sampling unit and sampling frame.</li> <li>Sample selection ways: Non-random sampling and random sampling.</li> <li>Methods of achieving randomness.</li> <li>Sampling methods: Probability and Non probability sampling and their types (only description)</li> <li>Probability sampling: SRS, SRSWR, SRSWOR, Stratified, Systematic, Cluster sampling.</li> <li>Non-probability sampling: Judgment, Quota, Convenience, snowball</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Unit-III | sampling. Measures of Central Tendency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 |
|          | <ul> <li>Measures of Central Tendency: Concept and Definition of Central Tendency, Characteristics of good measures of Central Tendency. Types of central Tendency;</li> <li>Arithmetic Mean (A.M): Definition of Mean, formulae for ungrouped and grouped data (without proof), Properties of A.M., Trimmed AM, Weighted A.M.</li> <li>Median: Definition of Median, Formulae for ungrouped and grouped data, Graphical data representation,</li> <li>Partition values: Quartiles, Deciles, Percentiles, Quantiles, and their interrelationship</li> <li>Mode: Definition of Mode, formulae for ungrouped and grouped data. Graphical Representation. Empirical relation between mean, median and mode.</li> <li>Partition values: Quartiles, Deciles, Percentiles, Quantiles, and their interrelationship</li> <li>Geometric mean: Definition of G.M, formulae, merits and demerits.</li> <li>Harmonic Mean: Definition of H.M, formulae.</li> <li>merits and demerits of AM, Median, Mode, HM, GM, Relation between A.M, G.M and H.M</li> <li>Box and Whisker plot. Choice of average.</li> </ul> |   |
| Unit-IV  | Measures of dispersionMeasures of Dispersion: Concept and Definition of dispersionCharacteristics of good measures of Dispersion.Types of Dispersion: Absolute and relative measures of dispersionRange: Definition, formula of range, for ungrouped and grouped data,merits and Demerits of range Coefficient of rangeMean deviation: definition, formula. for ungrouped and grouped dataMerits and demerit.Coefficient of mean deviation, minimal property of MD.Variance and Standard deviation: definition, formula. for ungrouped andgrouped data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 |

| Merits and demerit, combined variance. Minimal property of variance<br>(Mean square deviation, coefficient of quartile deviation and coefficient of<br>mean deviation, coefficient of variation (C.V)                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Raw moments for grouped and ungrouped data, Central moments for grouped and ungrouped, effect of change of origin and scale. Relation between central moments and raw moments, up to 4 <sup>th</sup> order (without prof) |  |

#### Suggested Readings/Material:

- 1. Agarwal, B. L. (2003). Programmed Statistics, Second Edition, New Age International Publishers, New Delhi.
- 2.
- 3. Gupta, S. C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics, Eleventh Edition, Sultan Chand and Sons Publishers, New Delhi.
- 4. Mood, A.M. Graybill, F.A. and Boes, D.C. (2007): Introduction to the Theory of Statistics, 3rd Edn. (Reprint), Tata McGraw-Hill Pub. Co. Ltd.
- 5. Sarma, K. V. S. (2001). Statistics Made it Simple: Do it yourself on PC. Prentice Hall of India, New Delhi.
- 6. Snedecor G. W. and Cochran W. G. (1989). Statistical Methods, Eighth Ed. East-West Press.
- 7. Gupta, S. C. and Kapoor, V. K. (1997). Fundamentals of Applied Statistics, 3rd Edition, Sultan Chand and Sons Publishers, NewDelhi.
- 8. Mukhopadhyay P. (2015). Applied Statistics, Publisher: Books & Allied (P) Ltd.
- 9. Agarwal, B. L. (2003). Programmed Statistics, 2nd Edition, New Age International Publishers, NewDelhi.
- 10. Gore Anil, Pranjape Sharayu, Kulkarni Madhav. Statistics for everyone. SIPF Acadamy Publisher, Nashik
- 11. Purohit, S. G., Gore S. D., Deshmukh S. R. (2008). Statistics Using R, Narosa Publishing House, NewDelhi.

| Title of tl | Title of the Course: Practical I |             |           |     |           |          |     |         |       |
|-------------|----------------------------------|-------------|-----------|-----|-----------|----------|-----|---------|-------|
| Year: I     |                                  |             | 5         | Sen | nester: I |          |     |         |       |
| Course      | Course Code                      | Credit Dist | tribution | L   | Credits   | Allotted | All | otted M | larks |
| Туре        |                                  | Theory      | Practic   | al  |           | Hours    |     |         |       |
|             |                                  |             |           |     |           |          |     |         |       |
|             |                                  |             |           |     |           |          | CIE | ESE     | Total |
| DSC-02      | BS-ST 112P                       | 00          | 02        |     | 02        | 60       | 15  | 35      | 50    |

| Sr.<br>No. | Title of the Practical                                 | No. of<br>Practical's |
|------------|--------------------------------------------------------|-----------------------|
| 1          | Diagrammatic Representation of Data                    | 1                     |
| 2          | Graphical Representation of Data                       | 1                     |
| 3          | Sampling Methods                                       | 1                     |
| 4          | Classification and Tabulation                          | 1                     |
| 5          | Measures of Central Tendency for ungrouped data        | 1                     |
| 6          | Measures of Central Tendency for grouped data          | 1                     |
| 7          | Measures of Dispersion for ungrouped data              | 1                     |
| 8          | Measures of Dispersion for grouped data                | 1                     |
| 9          | Computation of Moments for ungrouped and grouped data. | 1                     |
| 10         | Project                                                | 3                     |
|            | Total                                                  | 12                    |

| Title of th | Title of the Course: Basics of Probability |             |           |            |          |     |         |       |
|-------------|--------------------------------------------|-------------|-----------|------------|----------|-----|---------|-------|
| Year: I     |                                            |             | Se        | mester: II |          |     |         |       |
| Course      | Course                                     | Credit Dist | ribution  | Credits    | Allotted | All | otted M | larks |
| Туре        | Code                                       | Theory      | Practical |            | Hours    |     |         |       |
|             |                                            |             |           |            |          |     |         |       |
|             |                                            |             |           |            |          | CIE | ESE     | Total |
| DCS-03      | BS-ST121T                                  | 02          | 00        | 02         | 30       | 15  | 35      | 50    |

#### Learning Objectives:

- 1. The students learn certain and uncertain situations.
- 2. The students learn the concept of probability.
- 3. The Students able to understand the basic laws and axioms of probability.
- 4. The students understand concept of random variable and their types.
- 5. The students learn concept of probability distributions.

#### **Course Outcomes (Cos):**

After completion of this course,

- 1. The course will give the overall idea about the uncertain situations that are expressed in probabilistic form.
- 2. Statistical thinking will help one's success in life and career by quantifying uncertainty using probability.
- 3. Student will learn the use of probability for better decisions.
- 4. student will get an opportunity to collect the data related to uncertain situation and interpret the probabilities.
- 5. Student will able to apply basic probability principles to solve real life problems.

| Unit-I | Introduction to Probability                                                                                                                                                                                                                                                                                                                                                      | 09 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|        | Basics of Probability: Counting Principles: Additive principle,<br>multiplicative principle. Counting Rules: Permutations and combinations.<br>Rules and relationship between Permutations and combinations (without<br>proof). Concept of deterministic and non-deterministic models (Random<br>experiments)                                                                    |    |
|        | Definitions of sample space and types of sample space: Sample space,<br>Types of sample space: finite, countably infinite and uncountable. Real life<br>examples.                                                                                                                                                                                                                |    |
|        | Definitions of Event and types of event: Event and concept of occurrence<br>of an event Elementary event, complement of an event, certain event,<br>impossible event, Relative complement event, Mutually exclusive events<br>or Disjoint events (for two and three events), mutually Exhaustive events<br>(for two and three events), mutually exclusive and exhaustive events, |    |

|          | discrete random variable. Probability mass function (p.m.f) and cumulative distribution function (c.d.f), F(.) of discrete random variable, properties of                                                                                                                                                                                                                                                                                                                     |    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|          | Univariate Probability Distributions (Defined on Discrete Sample Space):<br>Univariate probability mass function (p.m.f.): Concept and definition of a<br>random variable. Types of random variable. Concept and definition of a                                                                                                                                                                                                                                              |    |
| Unit-III | Univariate Probability Distributions                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08 |
|          | Prior and posterior probabilities. Bayes' theorem. Applications of Bayes' theorem in real life. Concept of True positive (TP, Sensitivity), False positive (FP), True negative (TN, Specificity), False negative (FN). Numerical examples and problems                                                                                                                                                                                                                        |    |
|          | P (A $\cap$ B) = P (B)*P (A B). Generalization to P (A $\cap$ B $\cap$ C).                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|          | Definition of conditional probability of an event. Results on conditional probability, Multiplication theorem.                                                                                                                                                                                                                                                                                                                                                                |    |
|          | $P(A \cap B) = P(A) * P(B)$ , Pairwise independence and mutual independence for three events.                                                                                                                                                                                                                                                                                                                                                                                 |    |
|          | Definition of independence of two events,                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|          | Conditional probability and Independence                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07 |
|          | Axiomatic approach of probability. Axioms of Probability, Situations<br>where axiomatic approach of probability is applicable. Addition theorem<br>on probability and its generalization. Various results on Probability Boole's<br>inequality. Numerical examples and problems.                                                                                                                                                                                              |    |
|          | Classical definition of probability and its limitations. Equiprobable and<br>non-equiprobable sample space, classical definition of probability,<br>Addition theorem on probability, limitations of classical definition.<br>Situations where classical definition of probability is applicable.                                                                                                                                                                              |    |
| Unit-II  | Theory of Probability                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06 |
|          | None of the given three events, Simultaneous occurrence of the two events,<br>Simultaneous occurrence of the three events, Mutually exclusive events<br>(for two and three events), Mutually exhaustive events (for two and three<br>events), mutually exclusive and exhaustive events (for two and three<br>events), Partition of sample space, Exactly one event out of the two events,<br>Exactly one event out of the three events, Verification of De Morgan's<br>rules. |    |
|          | Occurrence of following events (with the help of listing and Venn diagram). Complement of an event, at least one of the two given events, At least one of the three given events, None of the given two events,                                                                                                                                                                                                                                                               |    |
|          | Partition of sample space. Algebra of events including De Morgan's rules<br>and its representation in set theory notation.                                                                                                                                                                                                                                                                                                                                                    |    |

|         | c.d.f., graphical representation of p.m.f. and c.d.f. Mode and median of discrete probability distribution. Numerical examples and problems.                                                                                                                                                                                                                                                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Mathematical Expectation (Univariate Random Variable):<br>Definition of expectation (mean) of a random variable, expectation of a<br>function of a random variable, m.g.f. and c.g.f. properties of m.g.f. and<br>c.g.f.                                                                                                                                                                           |
|         | Definitions of variance, standard deviation(s.d.) and coefficient of variation(C.V.) of univariate probability distribution, effect of change of origin and scale on mean, variance and s.d.                                                                                                                                                                                                       |
|         | Definition of raw, central and factorial raw moments of univariate probability distribution, and their interrelations (without proof).                                                                                                                                                                                                                                                             |
|         | Coefficients of skewness and kurtosis based on moments. Numerical examples and problems.                                                                                                                                                                                                                                                                                                           |
| Unit-IV | Bivariate Probability Distribution                                                                                                                                                                                                                                                                                                                                                                 |
|         | Discrete bivariate random vector or variable (X, Y): Joint p. m. f. and its properties, joint c. d. f. and its properties, probabilities of events related to random variables, marginal distribution.                                                                                                                                                                                             |
|         | Independence of two random variables and its extension to k random variables. conditional distributions, mathematical expectation of bivariate random variable, expectation of function of r.v. $E[g(X, Y)]$ ,                                                                                                                                                                                     |
|         | Theorems on expectation:                                                                                                                                                                                                                                                                                                                                                                           |
|         | <ul> <li>i) E(X + Y) = E(X) + E(Y) &amp; E(aX + bY + c)</li> <li>ii) E(XY) = E(X) * E(Y) if X and Y are independent and its generalization to k variables.</li> </ul>                                                                                                                                                                                                                              |
|         | Covariance, effect of change of origin & scale on covariance,<br>Var(aX + bY + c), corr(X, Y), effect of change of origin & scale on<br>correlation, independence Vs uncorrelatedness, conditional mean, proof of<br>$E\{E[X Y = y]\} = E[X] \& E\{E[Y X = x]\} = E[Y]$ , regression as a<br>conditional expectation, conditional variance, raw & central moments of<br>bivariate random variable. |
|         | Moment Generating Function (MGF): definition, applications, $M_{X,Y}(t_1, t_2)$ , properties, MGF of marginal distribution of random variables,                                                                                                                                                                                                                                                    |
|         | Proofs of the following properties:                                                                                                                                                                                                                                                                                                                                                                |
|         | i) $M_{X,Y}(t_1, t_2) = M_X(t_1, 0) M_Y(0, t_2)$ if X and Y are independent r.v.s.,                                                                                                                                                                                                                                                                                                                |
|         | ii) $M_{X+Y}(t) = M_{X, Y}(t, t)$                                                                                                                                                                                                                                                                                                                                                                  |
|         | iii) $M_{X+Y}(t) = M_X(t) M_Y(t)$ if X and Y are independent r.v.s.                                                                                                                                                                                                                                                                                                                                |
|         | Deduction of joint moments.                                                                                                                                                                                                                                                                                                                                                                        |

| Probability Generating Function (PGF): applications and properties.                           |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--|--|--|--|--|
| Cumulant Generating Function (CGF): applications and properties, deduction of central moment. |  |  |  |  |  |

#### Suggested Readings/Material:

- 1. Agarwal B. L. (2003). Programmed Statistics, second edition, New Age International Publishers, New Delhi.
- 2. Devore/ Peck: Statistics (The Exploration and Analysis of Data), Duxbury.
- 3. Gupta, S.C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics, Eighth Edition, Sultan Chand and Sons Publishers, New Delhi.
- 4. Hoel P. G. (1971). Introduction to Mathematical Statistics, John Wiley and Sons, New York.
- 5. Hogg, R. V. and Craig R. G. (1989). Introduction to Mathematical Statistics, Ed. 4. MacMillan Publishing Co., New York.
- 6. Mayer, P. (1972). Introductory Probability and Statistical Applications, Addison Wesley Publishing Co., London.
- 7. Statistical Methods: Welling, Khandeparkar, Pawar, Naralkar Manan Publications. First edition.
- 8. Theory and Problems of Statistics: Spiegel M.R. Schaums Publishing Series, Tata Mcgraw Hill. First edition
- 9. Rohatgi V. K. and Saleh A. K. Md. E. (2002): An Introduction to probability and statistics. John wiley & Sons (Asia)
- 10. Gupta V.K. & Kapoor S.C. Fundamentals of Mathematical Statistics. Sultan & Chand
- 11. Mukhopadhyay P. (2006): Probability. Books and Allied (P) Ltd

| Title of th    | Title of the Course: Practical II |           |            |            |          |     |         |       |
|----------------|-----------------------------------|-----------|------------|------------|----------|-----|---------|-------|
| Year: I        |                                   |           | Ser        | nester: II |          |     |         |       |
| Course         | Course Code                       | Credit Di | stribution | Credits    | Allotted | All | otted N | larks |
| Туре           |                                   | Theory    | Practical  |            | Hours    |     |         |       |
|                |                                   |           |            |            |          |     | -       | -     |
|                |                                   |           |            |            |          | CIE | ESE     | Total |
| <b>DSC-0</b> 3 | BS-ST 122P                        | 00        | 02         | 02         | 60       | 15  | 35      | 50    |

| Sr.<br>No. | Title of the Practical                                                                                 | No. of<br>Practical's |
|------------|--------------------------------------------------------------------------------------------------------|-----------------------|
| 1          | Sample space, Evnets and Venn Diagram                                                                  | 1                     |
| 2          | Addition and Multiplication Principles of Probability                                                  | 1                     |
| 3          | Computation of Probability of differnet events                                                         | 1                     |
| 4          | Computation of probability using classical definition and Axiomatic Approach                           | 1                     |
| 5          | Computation Conditional Probaility and Independence of Events.                                         | 1                     |
| 6          | Probabulity calculation using Multiplication theorem and Baye's Theorem                                |                       |
| 7          | Univariate Probability distribution( Drawing pmf, cdf and Computaion of mean, mode and median)         | 1                     |
| 8          | Univariate Mathematical Expectation                                                                    | 1                     |
| 9          | Computation of Probability of Bivariate Probability distribution and margianl probavility distribution | 1                     |
| 10         | Bivaraite Mathematical Expectation                                                                     | 1                     |
| 11         | Project                                                                                                | 2                     |
|            |                                                                                                        | 12                    |